Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,142 Bytes
826d651 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import random
import math
def MultiChannelSoftBinaryCrossEntropy(input, target, reduction='mean'):
'''
input: N x 38 x H x W --> 19N x 2 x H x W
target: N x 19 x H x W --> 19N x 1 x H x W
'''
input = input.view(-1, 2, input.size(2), input.size(3))
target = target.view(-1, 1, input.size(2), input.size(3))
logsoftmax = nn.LogSoftmax(dim=1)
if reduction == 'mean':
return torch.mean(torch.sum(-target * logsoftmax(input), dim=1))
else:
return torch.sum(torch.sum(-target * logsoftmax(input), dim=1))
class EdgeAwareLoss():
def __init__(self, nc=2, loss_type="L1", reduction='mean'):
assert loss_type in ['L1', 'BCE'], "Undefined loss type: {}".format(loss_type)
self.nc = nc
self.loss_type = loss_type
self.kernelx = Variable(torch.Tensor([[1,0,-1],[2,0,-2],[1,0,-1]]).cuda())
self.kernelx = self.kernelx.repeat(nc,1,1,1)
self.kernely = Variable(torch.Tensor([[1,2,1],[0,0,0],[-1,-2,-1]]).cuda())
self.kernely = self.kernely.repeat(nc,1,1,1)
self.bias = Variable(torch.zeros(nc).cuda())
self.reduction = reduction
if loss_type == 'L1':
self.loss = nn.SmoothL1Loss(reduction=reduction)
elif loss_type == 'BCE':
self.loss = self.bce2d
def bce2d(self, input, target):
assert not target.requires_grad
beta = 1 - torch.mean(target)
weights = 1 - beta + (2 * beta - 1) * target
loss = nn.functional.binary_cross_entropy(input, target, weights, reduction=self.reduction)
return loss
def get_edge(self, var):
assert var.size(1) == self.nc, \
"input size at dim 1 should be consistent with nc, {} vs {}".format(var.size(1), self.nc)
outputx = nn.functional.conv2d(var, self.kernelx, bias=self.bias, padding=1, groups=self.nc)
outputy = nn.functional.conv2d(var, self.kernely, bias=self.bias, padding=1, groups=self.nc)
eps=1e-05
return torch.sqrt(outputx.pow(2) + outputy.pow(2) + eps).mean(dim=1, keepdim=True)
def __call__(self, input, target):
size = target.shape[2:4]
input = nn.functional.interpolate(input, size=size, mode="bilinear", align_corners=True)
target_edge = self.get_edge(target)
if self.loss_type == 'L1':
return self.loss(self.get_edge(input), target_edge)
elif self.loss_type == 'BCE':
raise NotImplemented
#target_edge = torch.sign(target_edge - 0.1)
#pred = self.get_edge(nn.functional.sigmoid(input))
#return self.loss(pred, target_edge)
def KLD(mean, logvar):
return -0.5 * torch.sum(1 + logvar - mean.pow(2) - logvar.exp())
class DiscreteLoss(nn.Module):
def __init__(self, nbins, fmax):
super().__init__()
self.loss = nn.CrossEntropyLoss()
assert nbins % 2 == 1, "nbins should be odd"
self.nbins = nbins
self.fmax = fmax
self.step = 2 * fmax / float(nbins)
def tobin(self, target):
target = torch.clamp(target, -self.fmax + 1e-3, self.fmax - 1e-3)
quantized_target = torch.floor((target + self.fmax) / self.step)
return quantized_target.type(torch.cuda.LongTensor)
def __call__(self, input, target):
size = target.shape[2:4]
if input.shape[2] != size[0] or input.shape[3] != size[1]:
input = nn.functional.interpolate(input, size=size, mode="bilinear", align_corners=True)
target = self.tobin(target)
assert input.size(1) == self.nbins * 2
# print(target.shape)
# print(input.shape)
# print(torch.max(target))
target[target>=99]=98 # odd bugs of the training loss. We have [0 ~ 99] in GT flow, but nbins = 99
return self.loss(input[:,:self.nbins,...], target[:,0,...]) + self.loss(input[:,self.nbins:,...], target[:,1,...])
class MultiDiscreteLoss():
def __init__(self, nbins=19, fmax=47.5, reduction='mean', xy_weight=(1., 1.), quantize_strategy='linear'):
self.loss = nn.CrossEntropyLoss(reduction=reduction)
assert nbins % 2 == 1, "nbins should be odd"
self.nbins = nbins
self.fmax = fmax
self.step = 2 * fmax / float(nbins)
self.x_weight, self.y_weight = xy_weight
self.quantize_strategy = quantize_strategy
def tobin(self, target):
target = torch.clamp(target, -self.fmax + 1e-3, self.fmax - 1e-3)
if self.quantize_strategy == "linear":
quantized_target = torch.floor((target + self.fmax) / self.step)
elif self.quantize_strategy == "quadratic":
ind = target.data > 0
quantized_target = target.clone()
quantized_target[ind] = torch.floor(self.nbins * torch.sqrt(target[ind] / (4 * self.fmax)) + self.nbins / 2.)
quantized_target[~ind] = torch.floor(-self.nbins * torch.sqrt(-target[~ind] / (4 * self.fmax)) + self.nbins / 2.)
return quantized_target.type(torch.cuda.LongTensor)
def __call__(self, input, target):
size = target.shape[2:4]
target = self.tobin(target)
if isinstance(input, list):
input = [nn.functional.interpolate(ip, size=size, mode="bilinear", align_corners=True) for ip in input]
return sum([self.x_weight * self.loss(input[k][:,:self.nbins,...], target[:,0,...]) + self.y_weight * self.loss(input[k][:,self.nbins:,...], target[:,1,...]) for k in range(len(input))]) / float(len(input))
else:
input = nn.functional.interpolate(input, size=size, mode="bilinear", align_corners=True)
return self.x_weight * self.loss(input[:,:self.nbins,...], target[:,0,...]) + self.y_weight * self.loss(input[:,self.nbins:,...], target[:,1,...])
class MultiL1Loss():
def __init__(self, reduction='mean'):
self.loss = nn.SmoothL1Loss(reduction=reduction)
def __call__(self, input, target):
size = target.shape[2:4]
if isinstance(input, list):
input = [nn.functional.interpolate(ip, size=size, mode="bilinear", align_corners=True) for ip in input]
return sum([self.loss(input[k], target) for k in range(len(input))]) / float(len(input))
else:
input = nn.functional.interpolate(input, size=size, mode="bilinear", align_corners=True)
return self.loss(input, target)
class MultiMSELoss():
def __init__(self):
self.loss = nn.MSELoss()
def __call__(self, predicts, targets):
loss = 0
for predict, target in zip(predicts, targets):
loss += self.loss(predict, target)
return loss
class JointDiscreteLoss():
def __init__(self, nbins=19, fmax=47.5, reduction='mean', quantize_strategy='linear'):
self.loss = nn.CrossEntropyLoss(reduction=reduction)
assert nbins % 2 == 1, "nbins should be odd"
self.nbins = nbins
self.fmax = fmax
self.step = 2 * fmax / float(nbins)
self.quantize_strategy = quantize_strategy
def tobin(self, target):
target = torch.clamp(target, -self.fmax + 1e-3, self.fmax - 1e-3)
if self.quantize_strategy == "linear":
quantized_target = torch.floor((target + self.fmax) / self.step)
elif self.quantize_strategy == "quadratic":
ind = target.data > 0
quantized_target = target.clone()
quantized_target[ind] = torch.floor(self.nbins * torch.sqrt(target[ind] / (4 * self.fmax)) + self.nbins / 2.)
quantized_target[~ind] = torch.floor(-self.nbins * torch.sqrt(-target[~ind] / (4 * self.fmax)) + self.nbins / 2.)
else:
raise Exception("No such quantize strategy: {}".format(self.quantize_strategy))
joint_target = quantized_target[:,0,:,:] * self.nbins + quantized_target[:,1,:,:]
return joint_target.type(torch.cuda.LongTensor)
def __call__(self, input, target):
target = self.tobin(target)
assert input.size(1) == self.nbins ** 2
return self.loss(input, target)
class PolarDiscreteLoss():
def __init__(self, abins=30, rbins=20, fmax=50., reduction='mean', ar_weight=(1., 1.), quantize_strategy='linear'):
self.loss = nn.CrossEntropyLoss(reduction=reduction)
self.fmax = fmax
self.rbins = rbins
self.abins = abins
self.a_weight, self.r_weight = ar_weight
self.quantize_strategy = quantize_strategy
def tobin(self, target):
indxneg = target.data[:,0,:,:] < 0
eps = torch.zeros(target.data[:,0,:,:].size()).cuda()
epsind = target.data[:,0,:,:] == 0
eps[epsind] += 1e-5
angle = torch.atan(target.data[:,1,:,:] / (target.data[:,0,:,:] + eps))
angle[indxneg] += np.pi
angle += np.pi / 2 # 0 to 2pi
angle = torch.clamp(angle, 0, 2 * np.pi - 1e-3)
radius = torch.sqrt(target.data[:,0,:,:] ** 2 + target.data[:,1,:,:] ** 2)
radius = torch.clamp(radius, 0, self.fmax - 1e-3)
quantized_angle = torch.floor(self.abins * angle / (2 * np.pi))
if self.quantize_strategy == 'linear':
quantized_radius = torch.floor(self.rbins * radius / self.fmax)
elif self.quantize_strategy == 'quadratic':
quantized_radius = torch.floor(self.rbins * torch.sqrt(radius / self.fmax))
else:
raise Exception("No such quantize strategy: {}".format(self.quantize_strategy))
quantized_target = torch.autograd.Variable(torch.cat([torch.unsqueeze(quantized_angle, 1), torch.unsqueeze(quantized_radius, 1)], dim=1))
return quantized_target.type(torch.cuda.LongTensor)
def __call__(self, input, target):
target = self.tobin(target)
assert (target >= 0).all() and (target[:,0,:,:] < self.abins).all() and (target[:,1,:,:] < self.rbins).all()
return self.a_weight * self.loss(input[:,:self.abins,...], target[:,0,...]) + self.r_weight * self.loss(input[:,self.abins:,...], target[:,1,...])
class WeightedDiscreteLoss():
def __init__(self, nbins=19, fmax=47.5, reduction='mean'):
self.loss = CrossEntropy2d(reduction=reduction)
assert nbins % 2 == 1, "nbins should be odd"
self.nbins = nbins
self.fmax = fmax
self.step = 2 * fmax / float(nbins)
self.weight = np.ones((nbins), dtype=np.float32)
self.weight[int(self.fmax / self.step)] = 0.01
self.weight = torch.from_numpy(self.weight).cuda()
def tobin(self, target):
target = torch.clamp(target, -self.fmax + 1e-3, self.fmax - 1e-3)
return torch.floor((target + self.fmax) / self.step).type(torch.cuda.LongTensor)
def __call__(self, input, target):
target = self.tobin(target)
assert (target >= 0).all() and (target < self.nbins).all()
return self.loss(input[:,:self.nbins,...], target[:,0,...]) + self.loss(input[:,self.nbins:,...], target[:,1,...], self.weight)
class CrossEntropy2d(nn.Module):
def __init__(self, reduction='mean', ignore_label=-1):
super(CrossEntropy2d, self).__init__()
self.ignore_label = ignore_label
self.reduction = reduction
def forward(self, predict, target, weight=None):
"""
Args:
predict:(n, c, h, w)
target:(n, h, w)
weight (Tensor, optional): a manual rescaling weight given to each class.
If given, has to be a Tensor of size "nclasses"
"""
assert not target.requires_grad
assert predict.dim() == 4
assert target.dim() == 3
assert predict.size(0) == target.size(0), "{0} vs {1} ".format(predict.size(0), target.size(0))
assert predict.size(2) == target.size(1), "{0} vs {1} ".format(predict.size(2), target.size(1))
assert predict.size(3) == target.size(2), "{0} vs {1} ".format(predict.size(3), target.size(3))
n, c, h, w = predict.size()
target_mask = (target >= 0) * (target != self.ignore_label)
target = target[target_mask]
predict = predict.transpose(1, 2).transpose(2, 3).contiguous()
predict = predict[target_mask.view(n, h, w, 1).repeat(1, 1, 1, c)].view(-1, c)
loss = F.cross_entropy(predict, target, weight=weight, reduction=self.reduction)
return loss
#class CrossPixelSimilarityLoss():
# '''
# Modified from: https://github.com/lppllppl920/Challenge2018/blob/master/loss.py
# '''
# def __init__(self, sigma=0.0036, sampling_size=512):
# self.sigma = sigma
# self.sampling_size = sampling_size
# self.epsilon = 1.0e-15
# self.embed_norm = True # loss does not decrease no matter it is true or false.
#
# def __call__(self, embeddings, flows):
# '''
# embedding: Variable Nx256xHxW (not hyper-column)
# flows: Variable Nx2xHxW
# '''
# assert flows.size(1) == 2
#
# # flow normalization
# positive_mask = (flows > 0)
# flows = -torch.clamp(torch.log(torch.abs(flows) + 1) / math.log(50. + 1), max=1.)
# flows[positive_mask] = -flows[positive_mask]
#
# # embedding normalization
# if self.embed_norm:
# embeddings /= torch.norm(embeddings, p=2, dim=1, keepdim=True)
#
# # Spatially random sampling (512 samples)
# flows_flatten = flows.view(flows.shape[0], 2, -1)
# random_locations = Variable(torch.from_numpy(np.array(random.sample(range(flows_flatten.shape[2]), self.sampling_size))).long().cuda())
# flows_sample = torch.index_select(flows_flatten, 2, random_locations)
#
# # K_f
# k_f = self.epsilon + torch.norm(torch.unsqueeze(flows_sample, dim=-1).permute(0, 3, 2, 1) -
# torch.unsqueeze(flows_sample, dim=-1).permute(0, 2, 3, 1), p=2, dim=3,
# keepdim=False) ** 2
# exp_k_f = torch.exp(-k_f / 2. / self.sigma)
#
#
# # mask
# eye = Variable(torch.unsqueeze(torch.eye(k_f.shape[1]), dim=0).cuda())
# mask = torch.ones_like(exp_k_f) - eye
#
# # S_f
# masked_exp_k_f = torch.mul(mask, exp_k_f) + eye
# s_f = masked_exp_k_f / torch.sum(masked_exp_k_f, dim=1, keepdim=True)
#
# # K_theta
# embeddings_flatten = embeddings.view(embeddings.shape[0], embeddings.shape[1], -1)
# embeddings_sample = torch.index_select(embeddings_flatten, 2, random_locations)
# embeddings_sample_norm = torch.norm(embeddings_sample, p=2, dim=1, keepdim=True)
# k_theta = 0.25 * (torch.matmul(embeddings_sample.permute(0, 2, 1), embeddings_sample)) / (self.epsilon + torch.matmul(embeddings_sample_norm.permute(0, 2, 1), embeddings_sample_norm))
# exp_k_theta = torch.exp(k_theta)
#
# # S_theta
# masked_exp_k_theta = torch.mul(mask, exp_k_theta) + math.exp(-0.75) * eye
# s_theta = masked_exp_k_theta / torch.sum(masked_exp_k_theta, dim=1, keepdim=True)
#
# # loss
# loss = -torch.mean(torch.mul(s_f, torch.log(s_theta)))
#
# return loss
class CrossPixelSimilarityLoss():
'''
Modified from: https://github.com/lppllppl920/Challenge2018/blob/master/loss.py
'''
def __init__(self, sigma=0.01, sampling_size=512):
self.sigma = sigma
self.sampling_size = sampling_size
self.epsilon = 1.0e-15
self.embed_norm = True # loss does not decrease no matter it is true or false.
def __call__(self, embeddings, flows):
'''
embedding: Variable Nx256xHxW (not hyper-column)
flows: Variable Nx2xHxW
'''
assert flows.size(1) == 2
# flow normalization
positive_mask = (flows > 0)
flows = -torch.clamp(torch.log(torch.abs(flows) + 1) / math.log(50. + 1), max=1.)
flows[positive_mask] = -flows[positive_mask]
# embedding normalization
if self.embed_norm:
embeddings /= torch.norm(embeddings, p=2, dim=1, keepdim=True)
# Spatially random sampling (512 samples)
flows_flatten = flows.view(flows.shape[0], 2, -1)
random_locations = Variable(torch.from_numpy(np.array(random.sample(range(flows_flatten.shape[2]), self.sampling_size))).long().cuda())
flows_sample = torch.index_select(flows_flatten, 2, random_locations)
# K_f
k_f = self.epsilon + torch.norm(torch.unsqueeze(flows_sample, dim=-1).permute(0, 3, 2, 1) -
torch.unsqueeze(flows_sample, dim=-1).permute(0, 2, 3, 1), p=2, dim=3,
keepdim=False) ** 2
exp_k_f = torch.exp(-k_f / 2. / self.sigma)
# mask
eye = Variable(torch.unsqueeze(torch.eye(k_f.shape[1]), dim=0).cuda())
mask = torch.ones_like(exp_k_f) - eye
# S_f
masked_exp_k_f = torch.mul(mask, exp_k_f) + eye
s_f = masked_exp_k_f / torch.sum(masked_exp_k_f, dim=1, keepdim=True)
# K_theta
embeddings_flatten = embeddings.view(embeddings.shape[0], embeddings.shape[1], -1)
embeddings_sample = torch.index_select(embeddings_flatten, 2, random_locations)
embeddings_sample_norm = torch.norm(embeddings_sample, p=2, dim=1, keepdim=True)
k_theta = 0.25 * (torch.matmul(embeddings_sample.permute(0, 2, 1), embeddings_sample)) / (self.epsilon + torch.matmul(embeddings_sample_norm.permute(0, 2, 1), embeddings_sample_norm))
exp_k_theta = torch.exp(k_theta)
# S_theta
masked_exp_k_theta = torch.mul(mask, exp_k_theta) + eye
s_theta = masked_exp_k_theta / torch.sum(masked_exp_k_theta, dim=1, keepdim=True)
# loss
loss = -torch.mean(torch.mul(s_f, torch.log(s_theta)))
return loss
class CrossPixelSimilarityFullLoss():
'''
Modified from: https://github.com/lppllppl920/Challenge2018/blob/master/loss.py
'''
def __init__(self, sigma=0.01):
self.sigma = sigma
self.epsilon = 1.0e-15
self.embed_norm = True # loss does not decrease no matter it is true or false.
def __call__(self, embeddings, flows):
'''
embedding: Variable Nx256xHxW (not hyper-column)
flows: Variable Nx2xHxW
'''
assert flows.size(1) == 2
# downsample flow
factor = flows.shape[2] // embeddings.shape[2]
flows = nn.functional.avg_pool2d(flows, factor, factor)
assert flows.shape[2] == embeddings.shape[2]
# flow normalization
positive_mask = (flows > 0)
flows = -torch.clamp(torch.log(torch.abs(flows) + 1) / math.log(50. + 1), max=1.)
flows[positive_mask] = -flows[positive_mask]
# embedding normalization
if self.embed_norm:
embeddings /= torch.norm(embeddings, p=2, dim=1, keepdim=True)
# Spatially random sampling (512 samples)
flows_flatten = flows.view(flows.shape[0], 2, -1)
#random_locations = Variable(torch.from_numpy(np.array(random.sample(range(flows_flatten.shape[2]), self.sampling_size))).long().cuda())
#flows_sample = torch.index_select(flows_flatten, 2, random_locations)
# K_f
k_f = self.epsilon + torch.norm(torch.unsqueeze(flows_flatten, dim=-1).permute(0, 3, 2, 1) -
torch.unsqueeze(flows_flatten, dim=-1).permute(0, 2, 3, 1), p=2, dim=3,
keepdim=False) ** 2
exp_k_f = torch.exp(-k_f / 2. / self.sigma)
# mask
eye = Variable(torch.unsqueeze(torch.eye(k_f.shape[1]), dim=0).cuda())
mask = torch.ones_like(exp_k_f) - eye
# S_f
masked_exp_k_f = torch.mul(mask, exp_k_f) + eye
s_f = masked_exp_k_f / torch.sum(masked_exp_k_f, dim=1, keepdim=True)
# K_theta
embeddings_flatten = embeddings.view(embeddings.shape[0], embeddings.shape[1], -1)
#embeddings_sample = torch.index_select(embeddings_flatten, 2, random_locations)
embeddings_flatten_norm = torch.norm(embeddings_flatten, p=2, dim=1, keepdim=True)
k_theta = 0.25 * (torch.matmul(embeddings_flatten.permute(0, 2, 1), embeddings_flatten)) / (self.epsilon + torch.matmul(embeddings_flatten_norm.permute(0, 2, 1), embeddings_flatten_norm))
exp_k_theta = torch.exp(k_theta)
# S_theta
masked_exp_k_theta = torch.mul(mask, exp_k_theta) + eye
s_theta = masked_exp_k_theta / torch.sum(masked_exp_k_theta, dim=1, keepdim=True)
# loss
loss = -torch.mean(torch.mul(s_f, torch.log(s_theta)))
return loss
def get_column(embeddings, index, full_size):
col = []
for embd in embeddings:
ind = (index.float() / full_size * embd.size(2)).long()
col.append(torch.index_select(embd.view(embd.shape[0], embd.shape[1], -1), 2, ind))
return torch.cat(col, dim=1) # N x coldim x sparsenum
class CrossPixelSimilarityColumnLoss(nn.Module):
'''
Modified from: https://github.com/lppllppl920/Challenge2018/blob/master/loss.py
'''
def __init__(self, sigma=0.0036, sampling_size=512):
super(CrossPixelSimilarityColumnLoss, self).__init__()
self.sigma = sigma
self.sampling_size = sampling_size
self.epsilon = 1.0e-15
self.embed_norm = True # loss does not decrease no matter it is true or false.
self.mlp = nn.Sequential(
nn.Linear(96 + 96 + 384 + 256 + 4096, 256),
nn.ReLU(inplace=True),
nn.Linear(256, 16))
def forward(self, feats, flows):
'''
embedding: Variable Nx256xHxW (not hyper-column)
flows: Variable Nx2xHxW
'''
assert flows.size(1) == 2
# flow normalization
positive_mask = (flows > 0)
flows = -torch.clamp(torch.log(torch.abs(flows) + 1) / math.log(50. + 1), max=1.)
flows[positive_mask] = -flows[positive_mask]
# Spatially random sampling (512 samples)
flows_flatten = flows.view(flows.shape[0], 2, -1)
random_locations = Variable(torch.from_numpy(np.array(random.sample(range(flows_flatten.shape[2]), self.sampling_size))).long().cuda())
flows_sample = torch.index_select(flows_flatten, 2, random_locations)
# K_f
k_f = self.epsilon + torch.norm(torch.unsqueeze(flows_sample, dim=-1).permute(0, 3, 2, 1) -
torch.unsqueeze(flows_sample, dim=-1).permute(0, 2, 3, 1), p=2, dim=3,
keepdim=False) ** 2
exp_k_f = torch.exp(-k_f / 2. / self.sigma)
# mask
eye = Variable(torch.unsqueeze(torch.eye(k_f.shape[1]), dim=0).cuda())
mask = torch.ones_like(exp_k_f) - eye
# S_f
masked_exp_k_f = torch.mul(mask, exp_k_f) + eye
s_f = masked_exp_k_f / torch.sum(masked_exp_k_f, dim=1, keepdim=True)
# column
column = get_column(feats, random_locations, flows.shape[2])
embedding = self.mlp(column)
# K_theta
embedding_norm = torch.norm(embedding, p=2, dim=1, keepdim=True)
k_theta = 0.25 * (torch.matmul(embedding.permute(0, 2, 1), embedding)) / (self.epsilon + torch.matmul(embedding_norm.permute(0, 2, 1), embedding_norm))
exp_k_theta = torch.exp(k_theta)
# S_theta
masked_exp_k_theta = torch.mul(mask, exp_k_theta) + math.exp(-0.75) * eye
s_theta = masked_exp_k_theta / torch.sum(masked_exp_k_theta, dim=1, keepdim=True)
# loss
loss = -torch.mean(torch.mul(s_f, torch.log(s_theta)))
return loss
def print_info(name, var):
print(name, var.size(), torch.max(var).data.cpu()[0], torch.min(var).data.cpu()[0], torch.mean(var).data.cpu()[0])
def MaskL1Loss(input, target, mask):
input_size = input.size()
res = torch.sum(torch.abs(input * mask - target * mask))
total = torch.sum(mask).item()
if total > 0:
res = res / (total * input_size[1])
return res
|