import numpy as np from PIL import Image from diffusers import DiffusionPipeline from diffusers.utils import load_image pipe = DiffusionPipeline.from_pretrained( "Bingxin/Marigold", custom_pipeline="marigold_depth_estimation" # torch_dtype=torch.float16, # (optional) Run with half-precision (16-bit float). ) pipe.to("cuda") img_path_or_url = "https://share.phys.ethz.ch/~pf/bingkedata/marigold/pipeline_example.jpg" image: Image.Image = load_image(img_path_or_url) pipeline_output = pipe( image, # Input image. # denoising_steps=10, # (optional) Number of denoising steps of each inference pass. Default: 10. # ensemble_size=10, # (optional) Number of inference passes in the ensemble. Default: 10. # processing_res=768, # (optional) Maximum resolution of processing. If set to 0: will not resize at all. Defaults to 768. # match_input_res=True, # (optional) Resize depth prediction to match input resolution. # batch_size=0, # (optional) Inference batch size, no bigger than `num_ensemble`. If set to 0, the script will automatically decide the proper batch size. Defaults to 0. # color_map="Spectral", # (optional) Colormap used to colorize the depth map. Defaults to "Spectral". # show_progress_bar=True, # (optional) If true, will show progress bars of the inference progress. ) depth: np.ndarray = pipeline_output.depth_np # Predicted depth map depth_colored: Image.Image = pipeline_output.depth_colored # Colorized prediction # Save as uint16 PNG depth_uint16 = (depth * 65535.0).astype(np.uint16) Image.fromarray(depth_uint16).save("./depth_map.png", mode="I;16") # Save colorized depth map depth_colored.save("./depth_colored.png")