Spaces:
Runtime error
Runtime error
Mathdesenvnonimate
commited on
Commit
•
5e491c6
1
Parent(s):
bd1c2da
Upload 19 files
Browse files- .gitattributes +1 -0
- .gitignore +20 -0
- .gitmodules +3 -0
- LICENSE +21 -0
- LICENSE_GAUSSIAN_SPLATTING.md +83 -0
- README.md +8 -7
- app.py +129 -0
- cam_utils.py +146 -0
- grid_put.py +300 -0
- gs_renderer.py +820 -0
- main.py +882 -0
- main2.py +671 -0
- mesh.py +622 -0
- mesh_renderer.py +154 -0
- mesh_utils.py +147 -0
- process.py +92 -0
- requirements.txt +44 -0
- sh_utils.py +118 -0
- zero123.py +666 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
build/
|
3 |
+
*.egg-info/
|
4 |
+
*.so
|
5 |
+
venv_*/
|
6 |
+
.vs/
|
7 |
+
.vscode/
|
8 |
+
.idea/
|
9 |
+
|
10 |
+
tmp_*
|
11 |
+
data?
|
12 |
+
data??
|
13 |
+
scripts2
|
14 |
+
|
15 |
+
model_cache
|
16 |
+
|
17 |
+
logs
|
18 |
+
videos
|
19 |
+
images
|
20 |
+
*.mp4
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "diff-gaussian-rasterization"]
|
2 |
+
path = diff-gaussian-rasterization
|
3 |
+
url = https://github.com/ashawkey/diff-gaussian-rasterization
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 dreamgaussian
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
LICENSE_GAUSSIAN_SPLATTING.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Gaussian-Splatting License
|
2 |
+
===========================
|
3 |
+
|
4 |
+
**Inria** and **the Max Planck Institut for Informatik (MPII)** hold all the ownership rights on the *Software* named **gaussian-splatting**.
|
5 |
+
The *Software* is in the process of being registered with the Agence pour la Protection des
|
6 |
+
Programmes (APP).
|
7 |
+
|
8 |
+
The *Software* is still being developed by the *Licensor*.
|
9 |
+
|
10 |
+
*Licensor*'s goal is to allow the research community to use, test and evaluate
|
11 |
+
the *Software*.
|
12 |
+
|
13 |
+
## 1. Definitions
|
14 |
+
|
15 |
+
*Licensee* means any person or entity that uses the *Software* and distributes
|
16 |
+
its *Work*.
|
17 |
+
|
18 |
+
*Licensor* means the owners of the *Software*, i.e Inria and MPII
|
19 |
+
|
20 |
+
*Software* means the original work of authorship made available under this
|
21 |
+
License ie gaussian-splatting.
|
22 |
+
|
23 |
+
*Work* means the *Software* and any additions to or derivative works of the
|
24 |
+
*Software* that are made available under this License.
|
25 |
+
|
26 |
+
|
27 |
+
## 2. Purpose
|
28 |
+
This license is intended to define the rights granted to the *Licensee* by
|
29 |
+
Licensors under the *Software*.
|
30 |
+
|
31 |
+
## 3. Rights granted
|
32 |
+
|
33 |
+
For the above reasons Licensors have decided to distribute the *Software*.
|
34 |
+
Licensors grant non-exclusive rights to use the *Software* for research purposes
|
35 |
+
to research users (both academic and industrial), free of charge, without right
|
36 |
+
to sublicense.. The *Software* may be used "non-commercially", i.e., for research
|
37 |
+
and/or evaluation purposes only.
|
38 |
+
|
39 |
+
Subject to the terms and conditions of this License, you are granted a
|
40 |
+
non-exclusive, royalty-free, license to reproduce, prepare derivative works of,
|
41 |
+
publicly display, publicly perform and distribute its *Work* and any resulting
|
42 |
+
derivative works in any form.
|
43 |
+
|
44 |
+
## 4. Limitations
|
45 |
+
|
46 |
+
**4.1 Redistribution.** You may reproduce or distribute the *Work* only if (a) you do
|
47 |
+
so under this License, (b) you include a complete copy of this License with
|
48 |
+
your distribution, and (c) you retain without modification any copyright,
|
49 |
+
patent, trademark, or attribution notices that are present in the *Work*.
|
50 |
+
|
51 |
+
**4.2 Derivative Works.** You may specify that additional or different terms apply
|
52 |
+
to the use, reproduction, and distribution of your derivative works of the *Work*
|
53 |
+
("Your Terms") only if (a) Your Terms provide that the use limitation in
|
54 |
+
Section 2 applies to your derivative works, and (b) you identify the specific
|
55 |
+
derivative works that are subject to Your Terms. Notwithstanding Your Terms,
|
56 |
+
this License (including the redistribution requirements in Section 3.1) will
|
57 |
+
continue to apply to the *Work* itself.
|
58 |
+
|
59 |
+
**4.3** Any other use without of prior consent of Licensors is prohibited. Research
|
60 |
+
users explicitly acknowledge having received from Licensors all information
|
61 |
+
allowing to appreciate the adequacy between of the *Software* and their needs and
|
62 |
+
to undertake all necessary precautions for its execution and use.
|
63 |
+
|
64 |
+
**4.4** The *Software* is provided both as a compiled library file and as source
|
65 |
+
code. In case of using the *Software* for a publication or other results obtained
|
66 |
+
through the use of the *Software*, users are strongly encouraged to cite the
|
67 |
+
corresponding publications as explained in the documentation of the *Software*.
|
68 |
+
|
69 |
+
## 5. Disclaimer
|
70 |
+
|
71 |
+
THE USER CANNOT USE, EXPLOIT OR DISTRIBUTE THE *SOFTWARE* FOR COMMERCIAL PURPOSES
|
72 |
+
WITHOUT PRIOR AND EXPLICIT CONSENT OF LICENSORS. YOU MUST CONTACT INRIA FOR ANY
|
73 |
+
UNAUTHORIZED USE: [email protected] . ANY SUCH ACTION WILL
|
74 |
+
CONSTITUTE A FORGERY. THIS *SOFTWARE* IS PROVIDED "AS IS" WITHOUT ANY WARRANTIES
|
75 |
+
OF ANY NATURE AND ANY EXPRESS OR IMPLIED WARRANTIES, WITH REGARDS TO COMMERCIAL
|
76 |
+
USE, PROFESSIONNAL USE, LEGAL OR NOT, OR OTHER, OR COMMERCIALISATION OR
|
77 |
+
ADAPTATION. UNLESS EXPLICITLY PROVIDED BY LAW, IN NO EVENT, SHALL INRIA OR THE
|
78 |
+
AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
79 |
+
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
80 |
+
GOODS OR SERVICES, LOSS OF USE, DATA, OR PROFITS OR BUSINESS INTERRUPTION)
|
81 |
+
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
82 |
+
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING FROM, OUT OF OR
|
83 |
+
IN CONNECTION WITH THE *SOFTWARE* OR THE USE OR OTHER DEALINGS IN THE *SOFTWARE*.
|
README.md
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
1 |
---
|
2 |
+
title: DreamGaussian
|
3 |
+
emoji: 🐠
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.50.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
Paper is from https://arxiv.org/abs/2309.16653
|
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from PIL import Image
|
4 |
+
import subprocess
|
5 |
+
import hashlib
|
6 |
+
|
7 |
+
os.system('pip install -e ./simple-knn')
|
8 |
+
os.system('pip install -e ./diff-gaussian-rasterization')
|
9 |
+
|
10 |
+
# check if there is a picture uploaded or selected
|
11 |
+
def check_img_input(control_image):
|
12 |
+
if control_image is None:
|
13 |
+
raise gr.Error("Please select or upload an input image")
|
14 |
+
|
15 |
+
def optimize(image_block: Image.Image, preprocess_chk=True, elevation_slider=0):
|
16 |
+
stage_1_output = optimize_stage_1(image_block, preprocess_chk, elevation_slider)
|
17 |
+
stage_2_output = optimize_stage_2(image_block, elevation_slider)
|
18 |
+
return stage_1_output, stage_2_output
|
19 |
+
|
20 |
+
|
21 |
+
def optimize_stage_1(image_block: Image.Image, preprocess_chk: bool, elevation_slider: float):
|
22 |
+
if not os.path.exists('tmp_data'):
|
23 |
+
os.makedirs('tmp_data')
|
24 |
+
|
25 |
+
img_hash = hashlib.sha256(image_block.tobytes()).hexdigest()
|
26 |
+
if preprocess_chk:
|
27 |
+
# save image to a designated path
|
28 |
+
image_block.save(f'tmp_data/{img_hash}.png')
|
29 |
+
|
30 |
+
# preprocess image
|
31 |
+
subprocess.run([f'python process.py tmp_data/{img_hash}.png'], shell=True)
|
32 |
+
else:
|
33 |
+
image_block.save(f'tmp_data/{img_hash}_rgba.png')
|
34 |
+
|
35 |
+
# stage 1
|
36 |
+
subprocess.run([
|
37 |
+
f'python main.py --config configs/image.yaml input=tmp_data/{img_hash}_rgba.png save_path={img_hash} mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'],
|
38 |
+
shell=True)
|
39 |
+
|
40 |
+
return f'logs/{img_hash}_mesh.glb'
|
41 |
+
|
42 |
+
|
43 |
+
def optimize_stage_2(image_block: Image.Image, elevation_slider: float):
|
44 |
+
img_hash = hashlib.sha256(image_block.tobytes()).hexdigest()
|
45 |
+
# stage 2
|
46 |
+
subprocess.run([
|
47 |
+
f'python main2.py --config configs/image.yaml input=tmp_data/{img_hash}_rgba.png save_path={img_hash} mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'],
|
48 |
+
shell=True)
|
49 |
+
|
50 |
+
return f'logs/{img_hash}.glb'
|
51 |
+
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
_TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation'''
|
55 |
+
|
56 |
+
_DESCRIPTION = '''
|
57 |
+
<div>
|
58 |
+
<a style="display:inline-block" href="https://dreamgaussian.github.io"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
|
59 |
+
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.16653"><img src="https://img.shields.io/badge/2309.16653-f9f7f7?logo="></a>
|
60 |
+
<a style="display:inline-block; margin-left: .5em" href='https://github.com/dreamgaussian/dreamgaussian'><img src='https://img.shields.io/github/stars/dreamgaussian/dreamgaussian?style=social'/></a>
|
61 |
+
</div>
|
62 |
+
We present DreamGausssion, a 3D content generation framework that significantly improves the efficiency of 3D content creation.
|
63 |
+
'''
|
64 |
+
|
65 |
+
_DUPLICATE ='''
|
66 |
+
[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg)](https://huggingface.co/spaces/jiawei011/dreamgaussian?duplicate=true)
|
67 |
+
'''
|
68 |
+
_IMG_USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Generate 3D**."
|
69 |
+
|
70 |
+
# load images in 'data' folder as examples
|
71 |
+
example_folder = os.path.join(os.path.dirname(__file__), 'data')
|
72 |
+
example_fns = os.listdir(example_folder)
|
73 |
+
example_fns.sort()
|
74 |
+
examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
|
75 |
+
|
76 |
+
# Compose demo layout & data flow
|
77 |
+
with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
|
78 |
+
with gr.Row():
|
79 |
+
with gr.Column(scale=1):
|
80 |
+
gr.Markdown('# ' + _TITLE)
|
81 |
+
with gr.Column(scale=0):
|
82 |
+
gr.Markdown(_DUPLICATE)
|
83 |
+
gr.Markdown(_DESCRIPTION)
|
84 |
+
|
85 |
+
# Image-to-3D
|
86 |
+
with gr.Row(variant='panel'):
|
87 |
+
left_column = gr.Column(scale=5)
|
88 |
+
with left_column:
|
89 |
+
image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image', tool=None)
|
90 |
+
|
91 |
+
elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle')
|
92 |
+
gr.Markdown(
|
93 |
+
"default to 0 (horizontal), range from [-90, 90]. If you upload a look-down image, try a value like -30")
|
94 |
+
|
95 |
+
preprocess_chk = gr.Checkbox(True,
|
96 |
+
label='Preprocess image automatically (remove background and recenter object)')
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
with gr.Column(scale=5):
|
101 |
+
obj3d_stage1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Stage 1)")
|
102 |
+
obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)")
|
103 |
+
|
104 |
+
with left_column:
|
105 |
+
gr.Examples(
|
106 |
+
examples=examples_full, # NOTE: elements must match inputs list!
|
107 |
+
inputs=[image_block],
|
108 |
+
outputs=[obj3d_stage1, obj3d],
|
109 |
+
fn=optimize,
|
110 |
+
cache_examples=True,
|
111 |
+
label='Examples (click one of the images below to start)',
|
112 |
+
examples_per_page=40
|
113 |
+
)
|
114 |
+
img_run_btn = gr.Button("Generate 3D")
|
115 |
+
img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True)
|
116 |
+
|
117 |
+
# if there is an input image, continue with inference
|
118 |
+
# else display an error message
|
119 |
+
img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_1,
|
120 |
+
inputs=[image_block,
|
121 |
+
preprocess_chk,
|
122 |
+
elevation_slider],
|
123 |
+
outputs=[
|
124 |
+
obj3d_stage1]).success(
|
125 |
+
optimize_stage_2, inputs=[image_block, elevation_slider], outputs=[obj3d])
|
126 |
+
|
127 |
+
# demo.launch(enable_queue=True)
|
128 |
+
demo.queue(max_size=10) # <-- Sets up a queue with default parameters
|
129 |
+
demo.launch()
|
cam_utils.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from scipy.spatial.transform import Rotation as R
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
def dot(x, y):
|
7 |
+
if isinstance(x, np.ndarray):
|
8 |
+
return np.sum(x * y, -1, keepdims=True)
|
9 |
+
else:
|
10 |
+
return torch.sum(x * y, -1, keepdim=True)
|
11 |
+
|
12 |
+
|
13 |
+
def length(x, eps=1e-20):
|
14 |
+
if isinstance(x, np.ndarray):
|
15 |
+
return np.sqrt(np.maximum(np.sum(x * x, axis=-1, keepdims=True), eps))
|
16 |
+
else:
|
17 |
+
return torch.sqrt(torch.clamp(dot(x, x), min=eps))
|
18 |
+
|
19 |
+
|
20 |
+
def safe_normalize(x, eps=1e-20):
|
21 |
+
return x / length(x, eps)
|
22 |
+
|
23 |
+
|
24 |
+
def look_at(campos, target, opengl=True):
|
25 |
+
# campos: [N, 3], camera/eye position
|
26 |
+
# target: [N, 3], object to look at
|
27 |
+
# return: [N, 3, 3], rotation matrix
|
28 |
+
if not opengl:
|
29 |
+
# camera forward aligns with -z
|
30 |
+
forward_vector = safe_normalize(target - campos)
|
31 |
+
up_vector = np.array([0, 1, 0], dtype=np.float32)
|
32 |
+
right_vector = safe_normalize(np.cross(forward_vector, up_vector))
|
33 |
+
up_vector = safe_normalize(np.cross(right_vector, forward_vector))
|
34 |
+
else:
|
35 |
+
# camera forward aligns with +z
|
36 |
+
forward_vector = safe_normalize(campos - target)
|
37 |
+
up_vector = np.array([0, 1, 0], dtype=np.float32)
|
38 |
+
right_vector = safe_normalize(np.cross(up_vector, forward_vector))
|
39 |
+
up_vector = safe_normalize(np.cross(forward_vector, right_vector))
|
40 |
+
R = np.stack([right_vector, up_vector, forward_vector], axis=1)
|
41 |
+
return R
|
42 |
+
|
43 |
+
|
44 |
+
# elevation & azimuth to pose (cam2world) matrix
|
45 |
+
def orbit_camera(elevation, azimuth, radius=1, is_degree=True, target=None, opengl=True):
|
46 |
+
# radius: scalar
|
47 |
+
# elevation: scalar, in (-90, 90), from +y to -y is (-90, 90)
|
48 |
+
# azimuth: scalar, in (-180, 180), from +z to +x is (0, 90)
|
49 |
+
# return: [4, 4], camera pose matrix
|
50 |
+
if is_degree:
|
51 |
+
elevation = np.deg2rad(elevation)
|
52 |
+
azimuth = np.deg2rad(azimuth)
|
53 |
+
x = radius * np.cos(elevation) * np.sin(azimuth)
|
54 |
+
y = - radius * np.sin(elevation)
|
55 |
+
z = radius * np.cos(elevation) * np.cos(azimuth)
|
56 |
+
if target is None:
|
57 |
+
target = np.zeros([3], dtype=np.float32)
|
58 |
+
campos = np.array([x, y, z]) + target # [3]
|
59 |
+
T = np.eye(4, dtype=np.float32)
|
60 |
+
T[:3, :3] = look_at(campos, target, opengl)
|
61 |
+
T[:3, 3] = campos
|
62 |
+
return T
|
63 |
+
|
64 |
+
|
65 |
+
class OrbitCamera:
|
66 |
+
def __init__(self, W, H, r=2, fovy=60, near=0.01, far=100):
|
67 |
+
self.W = W
|
68 |
+
self.H = H
|
69 |
+
self.radius = r # camera distance from center
|
70 |
+
self.fovy = np.deg2rad(fovy) # deg 2 rad
|
71 |
+
self.near = near
|
72 |
+
self.far = far
|
73 |
+
self.center = np.array([0, 0, 0], dtype=np.float32) # look at this point
|
74 |
+
self.rot = R.from_matrix(np.eye(3))
|
75 |
+
self.up = np.array([0, 1, 0], dtype=np.float32) # need to be normalized!
|
76 |
+
|
77 |
+
@property
|
78 |
+
def fovx(self):
|
79 |
+
return 2 * np.arctan(np.tan(self.fovy / 2) * self.W / self.H)
|
80 |
+
|
81 |
+
@property
|
82 |
+
def campos(self):
|
83 |
+
return self.pose[:3, 3]
|
84 |
+
|
85 |
+
# pose (c2w)
|
86 |
+
@property
|
87 |
+
def pose(self):
|
88 |
+
# first move camera to radius
|
89 |
+
res = np.eye(4, dtype=np.float32)
|
90 |
+
res[2, 3] = self.radius # opengl convention...
|
91 |
+
# rotate
|
92 |
+
rot = np.eye(4, dtype=np.float32)
|
93 |
+
rot[:3, :3] = self.rot.as_matrix()
|
94 |
+
res = rot @ res
|
95 |
+
# translate
|
96 |
+
res[:3, 3] -= self.center
|
97 |
+
return res
|
98 |
+
|
99 |
+
# view (w2c)
|
100 |
+
@property
|
101 |
+
def view(self):
|
102 |
+
return np.linalg.inv(self.pose)
|
103 |
+
|
104 |
+
# projection (perspective)
|
105 |
+
@property
|
106 |
+
def perspective(self):
|
107 |
+
y = np.tan(self.fovy / 2)
|
108 |
+
aspect = self.W / self.H
|
109 |
+
return np.array(
|
110 |
+
[
|
111 |
+
[1 / (y * aspect), 0, 0, 0],
|
112 |
+
[0, -1 / y, 0, 0],
|
113 |
+
[
|
114 |
+
0,
|
115 |
+
0,
|
116 |
+
-(self.far + self.near) / (self.far - self.near),
|
117 |
+
-(2 * self.far * self.near) / (self.far - self.near),
|
118 |
+
],
|
119 |
+
[0, 0, -1, 0],
|
120 |
+
],
|
121 |
+
dtype=np.float32,
|
122 |
+
)
|
123 |
+
|
124 |
+
# intrinsics
|
125 |
+
@property
|
126 |
+
def intrinsics(self):
|
127 |
+
focal = self.H / (2 * np.tan(self.fovy / 2))
|
128 |
+
return np.array([focal, focal, self.W // 2, self.H // 2], dtype=np.float32)
|
129 |
+
|
130 |
+
@property
|
131 |
+
def mvp(self):
|
132 |
+
return self.perspective @ np.linalg.inv(self.pose) # [4, 4]
|
133 |
+
|
134 |
+
def orbit(self, dx, dy):
|
135 |
+
# rotate along camera up/side axis!
|
136 |
+
side = self.rot.as_matrix()[:3, 0]
|
137 |
+
rotvec_x = self.up * np.radians(-0.05 * dx)
|
138 |
+
rotvec_y = side * np.radians(-0.05 * dy)
|
139 |
+
self.rot = R.from_rotvec(rotvec_x) * R.from_rotvec(rotvec_y) * self.rot
|
140 |
+
|
141 |
+
def scale(self, delta):
|
142 |
+
self.radius *= 1.1 ** (-delta)
|
143 |
+
|
144 |
+
def pan(self, dx, dy, dz=0):
|
145 |
+
# pan in camera coordinate system (careful on the sensitivity!)
|
146 |
+
self.center += 0.0005 * self.rot.as_matrix()[:3, :3] @ np.array([-dx, -dy, dz])
|
grid_put.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
|
4 |
+
def stride_from_shape(shape):
|
5 |
+
stride = [1]
|
6 |
+
for x in reversed(shape[1:]):
|
7 |
+
stride.append(stride[-1] * x)
|
8 |
+
return list(reversed(stride))
|
9 |
+
|
10 |
+
|
11 |
+
def scatter_add_nd(input, indices, values):
|
12 |
+
# input: [..., C], D dimension + C channel
|
13 |
+
# indices: [N, D], long
|
14 |
+
# values: [N, C]
|
15 |
+
|
16 |
+
D = indices.shape[-1]
|
17 |
+
C = input.shape[-1]
|
18 |
+
size = input.shape[:-1]
|
19 |
+
stride = stride_from_shape(size)
|
20 |
+
|
21 |
+
assert len(size) == D
|
22 |
+
|
23 |
+
input = input.view(-1, C) # [HW, C]
|
24 |
+
flatten_indices = (indices * torch.tensor(stride, dtype=torch.long, device=indices.device)).sum(-1) # [N]
|
25 |
+
|
26 |
+
input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values)
|
27 |
+
|
28 |
+
return input.view(*size, C)
|
29 |
+
|
30 |
+
|
31 |
+
def scatter_add_nd_with_count(input, count, indices, values, weights=None):
|
32 |
+
# input: [..., C], D dimension + C channel
|
33 |
+
# count: [..., 1], D dimension
|
34 |
+
# indices: [N, D], long
|
35 |
+
# values: [N, C]
|
36 |
+
|
37 |
+
D = indices.shape[-1]
|
38 |
+
C = input.shape[-1]
|
39 |
+
size = input.shape[:-1]
|
40 |
+
stride = stride_from_shape(size)
|
41 |
+
|
42 |
+
assert len(size) == D
|
43 |
+
|
44 |
+
input = input.view(-1, C) # [HW, C]
|
45 |
+
count = count.view(-1, 1)
|
46 |
+
|
47 |
+
flatten_indices = (indices * torch.tensor(stride, dtype=torch.long, device=indices.device)).sum(-1) # [N]
|
48 |
+
|
49 |
+
if weights is None:
|
50 |
+
weights = torch.ones_like(values[..., :1])
|
51 |
+
|
52 |
+
input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values)
|
53 |
+
count.scatter_add_(0, flatten_indices.unsqueeze(1), weights)
|
54 |
+
|
55 |
+
return input.view(*size, C), count.view(*size, 1)
|
56 |
+
|
57 |
+
def nearest_grid_put_2d(H, W, coords, values, return_count=False):
|
58 |
+
# coords: [N, 2], float in [-1, 1]
|
59 |
+
# values: [N, C]
|
60 |
+
|
61 |
+
C = values.shape[-1]
|
62 |
+
|
63 |
+
indices = (coords * 0.5 + 0.5) * torch.tensor(
|
64 |
+
[H - 1, W - 1], dtype=torch.float32, device=coords.device
|
65 |
+
)
|
66 |
+
indices = indices.round().long() # [N, 2]
|
67 |
+
|
68 |
+
result = torch.zeros(H, W, C, device=values.device, dtype=values.dtype) # [H, W, C]
|
69 |
+
count = torch.zeros(H, W, 1, device=values.device, dtype=values.dtype) # [H, W, 1]
|
70 |
+
weights = torch.ones_like(values[..., :1]) # [N, 1]
|
71 |
+
|
72 |
+
result, count = scatter_add_nd_with_count(result, count, indices, values, weights)
|
73 |
+
|
74 |
+
if return_count:
|
75 |
+
return result, count
|
76 |
+
|
77 |
+
mask = (count.squeeze(-1) > 0)
|
78 |
+
result[mask] = result[mask] / count[mask].repeat(1, C)
|
79 |
+
|
80 |
+
return result
|
81 |
+
|
82 |
+
|
83 |
+
def linear_grid_put_2d(H, W, coords, values, return_count=False):
|
84 |
+
# coords: [N, 2], float in [-1, 1]
|
85 |
+
# values: [N, C]
|
86 |
+
|
87 |
+
C = values.shape[-1]
|
88 |
+
|
89 |
+
indices = (coords * 0.5 + 0.5) * torch.tensor(
|
90 |
+
[H - 1, W - 1], dtype=torch.float32, device=coords.device
|
91 |
+
)
|
92 |
+
indices_00 = indices.floor().long() # [N, 2]
|
93 |
+
indices_00[:, 0].clamp_(0, H - 2)
|
94 |
+
indices_00[:, 1].clamp_(0, W - 2)
|
95 |
+
indices_01 = indices_00 + torch.tensor(
|
96 |
+
[0, 1], dtype=torch.long, device=indices.device
|
97 |
+
)
|
98 |
+
indices_10 = indices_00 + torch.tensor(
|
99 |
+
[1, 0], dtype=torch.long, device=indices.device
|
100 |
+
)
|
101 |
+
indices_11 = indices_00 + torch.tensor(
|
102 |
+
[1, 1], dtype=torch.long, device=indices.device
|
103 |
+
)
|
104 |
+
|
105 |
+
h = indices[..., 0] - indices_00[..., 0].float()
|
106 |
+
w = indices[..., 1] - indices_00[..., 1].float()
|
107 |
+
w_00 = (1 - h) * (1 - w)
|
108 |
+
w_01 = (1 - h) * w
|
109 |
+
w_10 = h * (1 - w)
|
110 |
+
w_11 = h * w
|
111 |
+
|
112 |
+
result = torch.zeros(H, W, C, device=values.device, dtype=values.dtype) # [H, W, C]
|
113 |
+
count = torch.zeros(H, W, 1, device=values.device, dtype=values.dtype) # [H, W, 1]
|
114 |
+
weights = torch.ones_like(values[..., :1]) # [N, 1]
|
115 |
+
|
116 |
+
result, count = scatter_add_nd_with_count(result, count, indices_00, values * w_00.unsqueeze(1), weights* w_00.unsqueeze(1))
|
117 |
+
result, count = scatter_add_nd_with_count(result, count, indices_01, values * w_01.unsqueeze(1), weights* w_01.unsqueeze(1))
|
118 |
+
result, count = scatter_add_nd_with_count(result, count, indices_10, values * w_10.unsqueeze(1), weights* w_10.unsqueeze(1))
|
119 |
+
result, count = scatter_add_nd_with_count(result, count, indices_11, values * w_11.unsqueeze(1), weights* w_11.unsqueeze(1))
|
120 |
+
|
121 |
+
if return_count:
|
122 |
+
return result, count
|
123 |
+
|
124 |
+
mask = (count.squeeze(-1) > 0)
|
125 |
+
result[mask] = result[mask] / count[mask].repeat(1, C)
|
126 |
+
|
127 |
+
return result
|
128 |
+
|
129 |
+
def mipmap_linear_grid_put_2d(H, W, coords, values, min_resolution=32, return_count=False):
|
130 |
+
# coords: [N, 2], float in [-1, 1]
|
131 |
+
# values: [N, C]
|
132 |
+
|
133 |
+
C = values.shape[-1]
|
134 |
+
|
135 |
+
result = torch.zeros(H, W, C, device=values.device, dtype=values.dtype) # [H, W, C]
|
136 |
+
count = torch.zeros(H, W, 1, device=values.device, dtype=values.dtype) # [H, W, 1]
|
137 |
+
|
138 |
+
cur_H, cur_W = H, W
|
139 |
+
|
140 |
+
while min(cur_H, cur_W) > min_resolution:
|
141 |
+
|
142 |
+
# try to fill the holes
|
143 |
+
mask = (count.squeeze(-1) == 0)
|
144 |
+
if not mask.any():
|
145 |
+
break
|
146 |
+
|
147 |
+
cur_result, cur_count = linear_grid_put_2d(cur_H, cur_W, coords, values, return_count=True)
|
148 |
+
result[mask] = result[mask] + F.interpolate(cur_result.permute(2,0,1).unsqueeze(0).contiguous(), (H, W), mode='bilinear', align_corners=False).squeeze(0).permute(1,2,0).contiguous()[mask]
|
149 |
+
count[mask] = count[mask] + F.interpolate(cur_count.view(1, 1, cur_H, cur_W), (H, W), mode='bilinear', align_corners=False).view(H, W, 1)[mask]
|
150 |
+
cur_H //= 2
|
151 |
+
cur_W //= 2
|
152 |
+
|
153 |
+
if return_count:
|
154 |
+
return result, count
|
155 |
+
|
156 |
+
mask = (count.squeeze(-1) > 0)
|
157 |
+
result[mask] = result[mask] / count[mask].repeat(1, C)
|
158 |
+
|
159 |
+
return result
|
160 |
+
|
161 |
+
def nearest_grid_put_3d(H, W, D, coords, values, return_count=False):
|
162 |
+
# coords: [N, 3], float in [-1, 1]
|
163 |
+
# values: [N, C]
|
164 |
+
|
165 |
+
C = values.shape[-1]
|
166 |
+
|
167 |
+
indices = (coords * 0.5 + 0.5) * torch.tensor(
|
168 |
+
[H - 1, W - 1, D - 1], dtype=torch.float32, device=coords.device
|
169 |
+
)
|
170 |
+
indices = indices.round().long() # [N, 2]
|
171 |
+
|
172 |
+
result = torch.zeros(H, W, D, C, device=values.device, dtype=values.dtype) # [H, W, C]
|
173 |
+
count = torch.zeros(H, W, D, 1, device=values.device, dtype=values.dtype) # [H, W, 1]
|
174 |
+
weights = torch.ones_like(values[..., :1]) # [N, 1]
|
175 |
+
|
176 |
+
result, count = scatter_add_nd_with_count(result, count, indices, values, weights)
|
177 |
+
|
178 |
+
if return_count:
|
179 |
+
return result, count
|
180 |
+
|
181 |
+
mask = (count.squeeze(-1) > 0)
|
182 |
+
result[mask] = result[mask] / count[mask].repeat(1, C)
|
183 |
+
|
184 |
+
return result
|
185 |
+
|
186 |
+
|
187 |
+
def linear_grid_put_3d(H, W, D, coords, values, return_count=False):
|
188 |
+
# coords: [N, 3], float in [-1, 1]
|
189 |
+
# values: [N, C]
|
190 |
+
|
191 |
+
C = values.shape[-1]
|
192 |
+
|
193 |
+
indices = (coords * 0.5 + 0.5) * torch.tensor(
|
194 |
+
[H - 1, W - 1, D - 1], dtype=torch.float32, device=coords.device
|
195 |
+
)
|
196 |
+
indices_000 = indices.floor().long() # [N, 3]
|
197 |
+
indices_000[:, 0].clamp_(0, H - 2)
|
198 |
+
indices_000[:, 1].clamp_(0, W - 2)
|
199 |
+
indices_000[:, 2].clamp_(0, D - 2)
|
200 |
+
|
201 |
+
indices_001 = indices_000 + torch.tensor([0, 0, 1], dtype=torch.long, device=indices.device)
|
202 |
+
indices_010 = indices_000 + torch.tensor([0, 1, 0], dtype=torch.long, device=indices.device)
|
203 |
+
indices_011 = indices_000 + torch.tensor([0, 1, 1], dtype=torch.long, device=indices.device)
|
204 |
+
indices_100 = indices_000 + torch.tensor([1, 0, 0], dtype=torch.long, device=indices.device)
|
205 |
+
indices_101 = indices_000 + torch.tensor([1, 0, 1], dtype=torch.long, device=indices.device)
|
206 |
+
indices_110 = indices_000 + torch.tensor([1, 1, 0], dtype=torch.long, device=indices.device)
|
207 |
+
indices_111 = indices_000 + torch.tensor([1, 1, 1], dtype=torch.long, device=indices.device)
|
208 |
+
|
209 |
+
h = indices[..., 0] - indices_000[..., 0].float()
|
210 |
+
w = indices[..., 1] - indices_000[..., 1].float()
|
211 |
+
d = indices[..., 2] - indices_000[..., 2].float()
|
212 |
+
|
213 |
+
w_000 = (1 - h) * (1 - w) * (1 - d)
|
214 |
+
w_001 = (1 - h) * w * (1 - d)
|
215 |
+
w_010 = h * (1 - w) * (1 - d)
|
216 |
+
w_011 = h * w * (1 - d)
|
217 |
+
w_100 = (1 - h) * (1 - w) * d
|
218 |
+
w_101 = (1 - h) * w * d
|
219 |
+
w_110 = h * (1 - w) * d
|
220 |
+
w_111 = h * w * d
|
221 |
+
|
222 |
+
result = torch.zeros(H, W, D, C, device=values.device, dtype=values.dtype) # [H, W, D, C]
|
223 |
+
count = torch.zeros(H, W, D, 1, device=values.device, dtype=values.dtype) # [H, W, D, 1]
|
224 |
+
weights = torch.ones_like(values[..., :1]) # [N, 1]
|
225 |
+
|
226 |
+
result, count = scatter_add_nd_with_count(result, count, indices_000, values * w_000.unsqueeze(1), weights * w_000.unsqueeze(1))
|
227 |
+
result, count = scatter_add_nd_with_count(result, count, indices_001, values * w_001.unsqueeze(1), weights * w_001.unsqueeze(1))
|
228 |
+
result, count = scatter_add_nd_with_count(result, count, indices_010, values * w_010.unsqueeze(1), weights * w_010.unsqueeze(1))
|
229 |
+
result, count = scatter_add_nd_with_count(result, count, indices_011, values * w_011.unsqueeze(1), weights * w_011.unsqueeze(1))
|
230 |
+
result, count = scatter_add_nd_with_count(result, count, indices_100, values * w_100.unsqueeze(1), weights * w_100.unsqueeze(1))
|
231 |
+
result, count = scatter_add_nd_with_count(result, count, indices_101, values * w_101.unsqueeze(1), weights * w_101.unsqueeze(1))
|
232 |
+
result, count = scatter_add_nd_with_count(result, count, indices_110, values * w_110.unsqueeze(1), weights * w_110.unsqueeze(1))
|
233 |
+
result, count = scatter_add_nd_with_count(result, count, indices_111, values * w_111.unsqueeze(1), weights * w_111.unsqueeze(1))
|
234 |
+
|
235 |
+
if return_count:
|
236 |
+
return result, count
|
237 |
+
|
238 |
+
mask = (count.squeeze(-1) > 0)
|
239 |
+
result[mask] = result[mask] / count[mask].repeat(1, C)
|
240 |
+
|
241 |
+
return result
|
242 |
+
|
243 |
+
def mipmap_linear_grid_put_3d(H, W, D, coords, values, min_resolution=32, return_count=False):
|
244 |
+
# coords: [N, 3], float in [-1, 1]
|
245 |
+
# values: [N, C]
|
246 |
+
|
247 |
+
C = values.shape[-1]
|
248 |
+
|
249 |
+
result = torch.zeros(H, W, D, C, device=values.device, dtype=values.dtype) # [H, W, D, C]
|
250 |
+
count = torch.zeros(H, W, D, 1, device=values.device, dtype=values.dtype) # [H, W, D, 1]
|
251 |
+
cur_H, cur_W, cur_D = H, W, D
|
252 |
+
|
253 |
+
while min(min(cur_H, cur_W), cur_D) > min_resolution:
|
254 |
+
|
255 |
+
# try to fill the holes
|
256 |
+
mask = (count.squeeze(-1) == 0)
|
257 |
+
if not mask.any():
|
258 |
+
break
|
259 |
+
|
260 |
+
cur_result, cur_count = linear_grid_put_3d(cur_H, cur_W, cur_D, coords, values, return_count=True)
|
261 |
+
result[mask] = result[mask] + F.interpolate(cur_result.permute(3,0,1,2).unsqueeze(0).contiguous(), (H, W, D), mode='trilinear', align_corners=False).squeeze(0).permute(1,2,3,0).contiguous()[mask]
|
262 |
+
count[mask] = count[mask] + F.interpolate(cur_count.view(1, 1, cur_H, cur_W, cur_D), (H, W, D), mode='trilinear', align_corners=False).view(H, W, D, 1)[mask]
|
263 |
+
cur_H //= 2
|
264 |
+
cur_W //= 2
|
265 |
+
cur_D //= 2
|
266 |
+
|
267 |
+
if return_count:
|
268 |
+
return result, count
|
269 |
+
|
270 |
+
mask = (count.squeeze(-1) > 0)
|
271 |
+
result[mask] = result[mask] / count[mask].repeat(1, C)
|
272 |
+
|
273 |
+
return result
|
274 |
+
|
275 |
+
|
276 |
+
def grid_put(shape, coords, values, mode='linear-mipmap', min_resolution=32, return_raw=False):
|
277 |
+
# shape: [D], list/tuple
|
278 |
+
# coords: [N, D], float in [-1, 1]
|
279 |
+
# values: [N, C]
|
280 |
+
|
281 |
+
D = len(shape)
|
282 |
+
assert D in [2, 3], f'only support D == 2 or 3, but got D == {D}'
|
283 |
+
|
284 |
+
if mode == 'nearest':
|
285 |
+
if D == 2:
|
286 |
+
return nearest_grid_put_2d(*shape, coords, values, return_raw)
|
287 |
+
else:
|
288 |
+
return nearest_grid_put_3d(*shape, coords, values, return_raw)
|
289 |
+
elif mode == 'linear':
|
290 |
+
if D == 2:
|
291 |
+
return linear_grid_put_2d(*shape, coords, values, return_raw)
|
292 |
+
else:
|
293 |
+
return linear_grid_put_3d(*shape, coords, values, return_raw)
|
294 |
+
elif mode == 'linear-mipmap':
|
295 |
+
if D == 2:
|
296 |
+
return mipmap_linear_grid_put_2d(*shape, coords, values, min_resolution, return_raw)
|
297 |
+
else:
|
298 |
+
return mipmap_linear_grid_put_3d(*shape, coords, values, min_resolution, return_raw)
|
299 |
+
else:
|
300 |
+
raise NotImplementedError(f"got mode {mode}")
|
gs_renderer.py
ADDED
@@ -0,0 +1,820 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
from typing import NamedTuple
|
5 |
+
from plyfile import PlyData, PlyElement
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from diff_gaussian_rasterization import (
|
11 |
+
GaussianRasterizationSettings,
|
12 |
+
GaussianRasterizer,
|
13 |
+
)
|
14 |
+
from simple_knn._C import distCUDA2
|
15 |
+
|
16 |
+
from sh_utils import eval_sh, SH2RGB, RGB2SH
|
17 |
+
from mesh import Mesh
|
18 |
+
from mesh_utils import decimate_mesh, clean_mesh
|
19 |
+
|
20 |
+
import kiui
|
21 |
+
|
22 |
+
def inverse_sigmoid(x):
|
23 |
+
return torch.log(x/(1-x))
|
24 |
+
|
25 |
+
def get_expon_lr_func(
|
26 |
+
lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000
|
27 |
+
):
|
28 |
+
|
29 |
+
def helper(step):
|
30 |
+
if lr_init == lr_final:
|
31 |
+
# constant lr, ignore other params
|
32 |
+
return lr_init
|
33 |
+
if step < 0 or (lr_init == 0.0 and lr_final == 0.0):
|
34 |
+
# Disable this parameter
|
35 |
+
return 0.0
|
36 |
+
if lr_delay_steps > 0:
|
37 |
+
# A kind of reverse cosine decay.
|
38 |
+
delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin(
|
39 |
+
0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1)
|
40 |
+
)
|
41 |
+
else:
|
42 |
+
delay_rate = 1.0
|
43 |
+
t = np.clip(step / max_steps, 0, 1)
|
44 |
+
log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
|
45 |
+
return delay_rate * log_lerp
|
46 |
+
|
47 |
+
return helper
|
48 |
+
|
49 |
+
|
50 |
+
def strip_lowerdiag(L):
|
51 |
+
uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda")
|
52 |
+
|
53 |
+
uncertainty[:, 0] = L[:, 0, 0]
|
54 |
+
uncertainty[:, 1] = L[:, 0, 1]
|
55 |
+
uncertainty[:, 2] = L[:, 0, 2]
|
56 |
+
uncertainty[:, 3] = L[:, 1, 1]
|
57 |
+
uncertainty[:, 4] = L[:, 1, 2]
|
58 |
+
uncertainty[:, 5] = L[:, 2, 2]
|
59 |
+
return uncertainty
|
60 |
+
|
61 |
+
def strip_symmetric(sym):
|
62 |
+
return strip_lowerdiag(sym)
|
63 |
+
|
64 |
+
def gaussian_3d_coeff(xyzs, covs):
|
65 |
+
# xyzs: [N, 3]
|
66 |
+
# covs: [N, 6]
|
67 |
+
x, y, z = xyzs[:, 0], xyzs[:, 1], xyzs[:, 2]
|
68 |
+
a, b, c, d, e, f = covs[:, 0], covs[:, 1], covs[:, 2], covs[:, 3], covs[:, 4], covs[:, 5]
|
69 |
+
|
70 |
+
# eps must be small enough !!!
|
71 |
+
inv_det = 1 / (a * d * f + 2 * e * c * b - e**2 * a - c**2 * d - b**2 * f + 1e-24)
|
72 |
+
inv_a = (d * f - e**2) * inv_det
|
73 |
+
inv_b = (e * c - b * f) * inv_det
|
74 |
+
inv_c = (e * b - c * d) * inv_det
|
75 |
+
inv_d = (a * f - c**2) * inv_det
|
76 |
+
inv_e = (b * c - e * a) * inv_det
|
77 |
+
inv_f = (a * d - b**2) * inv_det
|
78 |
+
|
79 |
+
power = -0.5 * (x**2 * inv_a + y**2 * inv_d + z**2 * inv_f) - x * y * inv_b - x * z * inv_c - y * z * inv_e
|
80 |
+
|
81 |
+
power[power > 0] = -1e10 # abnormal values... make weights 0
|
82 |
+
|
83 |
+
return torch.exp(power)
|
84 |
+
|
85 |
+
def build_rotation(r):
|
86 |
+
norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3])
|
87 |
+
|
88 |
+
q = r / norm[:, None]
|
89 |
+
|
90 |
+
R = torch.zeros((q.size(0), 3, 3), device='cuda')
|
91 |
+
|
92 |
+
r = q[:, 0]
|
93 |
+
x = q[:, 1]
|
94 |
+
y = q[:, 2]
|
95 |
+
z = q[:, 3]
|
96 |
+
|
97 |
+
R[:, 0, 0] = 1 - 2 * (y*y + z*z)
|
98 |
+
R[:, 0, 1] = 2 * (x*y - r*z)
|
99 |
+
R[:, 0, 2] = 2 * (x*z + r*y)
|
100 |
+
R[:, 1, 0] = 2 * (x*y + r*z)
|
101 |
+
R[:, 1, 1] = 1 - 2 * (x*x + z*z)
|
102 |
+
R[:, 1, 2] = 2 * (y*z - r*x)
|
103 |
+
R[:, 2, 0] = 2 * (x*z - r*y)
|
104 |
+
R[:, 2, 1] = 2 * (y*z + r*x)
|
105 |
+
R[:, 2, 2] = 1 - 2 * (x*x + y*y)
|
106 |
+
return R
|
107 |
+
|
108 |
+
def build_scaling_rotation(s, r):
|
109 |
+
L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda")
|
110 |
+
R = build_rotation(r)
|
111 |
+
|
112 |
+
L[:,0,0] = s[:,0]
|
113 |
+
L[:,1,1] = s[:,1]
|
114 |
+
L[:,2,2] = s[:,2]
|
115 |
+
|
116 |
+
L = R @ L
|
117 |
+
return L
|
118 |
+
|
119 |
+
class BasicPointCloud(NamedTuple):
|
120 |
+
points: np.array
|
121 |
+
colors: np.array
|
122 |
+
normals: np.array
|
123 |
+
|
124 |
+
|
125 |
+
class GaussianModel:
|
126 |
+
|
127 |
+
def setup_functions(self):
|
128 |
+
def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
|
129 |
+
L = build_scaling_rotation(scaling_modifier * scaling, rotation)
|
130 |
+
actual_covariance = L @ L.transpose(1, 2)
|
131 |
+
symm = strip_symmetric(actual_covariance)
|
132 |
+
return symm
|
133 |
+
|
134 |
+
self.scaling_activation = torch.exp
|
135 |
+
self.scaling_inverse_activation = torch.log
|
136 |
+
|
137 |
+
self.covariance_activation = build_covariance_from_scaling_rotation
|
138 |
+
|
139 |
+
self.opacity_activation = torch.sigmoid
|
140 |
+
self.inverse_opacity_activation = inverse_sigmoid
|
141 |
+
|
142 |
+
self.rotation_activation = torch.nn.functional.normalize
|
143 |
+
|
144 |
+
|
145 |
+
def __init__(self, sh_degree : int):
|
146 |
+
self.active_sh_degree = 0
|
147 |
+
self.max_sh_degree = sh_degree
|
148 |
+
self._xyz = torch.empty(0)
|
149 |
+
self._features_dc = torch.empty(0)
|
150 |
+
self._features_rest = torch.empty(0)
|
151 |
+
self._scaling = torch.empty(0)
|
152 |
+
self._rotation = torch.empty(0)
|
153 |
+
self._opacity = torch.empty(0)
|
154 |
+
self.max_radii2D = torch.empty(0)
|
155 |
+
self.xyz_gradient_accum = torch.empty(0)
|
156 |
+
self.denom = torch.empty(0)
|
157 |
+
self.optimizer = None
|
158 |
+
self.percent_dense = 0
|
159 |
+
self.spatial_lr_scale = 0
|
160 |
+
self.setup_functions()
|
161 |
+
|
162 |
+
def capture(self):
|
163 |
+
return (
|
164 |
+
self.active_sh_degree,
|
165 |
+
self._xyz,
|
166 |
+
self._features_dc,
|
167 |
+
self._features_rest,
|
168 |
+
self._scaling,
|
169 |
+
self._rotation,
|
170 |
+
self._opacity,
|
171 |
+
self.max_radii2D,
|
172 |
+
self.xyz_gradient_accum,
|
173 |
+
self.denom,
|
174 |
+
self.optimizer.state_dict(),
|
175 |
+
self.spatial_lr_scale,
|
176 |
+
)
|
177 |
+
|
178 |
+
def restore(self, model_args, training_args):
|
179 |
+
(self.active_sh_degree,
|
180 |
+
self._xyz,
|
181 |
+
self._features_dc,
|
182 |
+
self._features_rest,
|
183 |
+
self._scaling,
|
184 |
+
self._rotation,
|
185 |
+
self._opacity,
|
186 |
+
self.max_radii2D,
|
187 |
+
xyz_gradient_accum,
|
188 |
+
denom,
|
189 |
+
opt_dict,
|
190 |
+
self.spatial_lr_scale) = model_args
|
191 |
+
self.training_setup(training_args)
|
192 |
+
self.xyz_gradient_accum = xyz_gradient_accum
|
193 |
+
self.denom = denom
|
194 |
+
self.optimizer.load_state_dict(opt_dict)
|
195 |
+
|
196 |
+
@property
|
197 |
+
def get_scaling(self):
|
198 |
+
return self.scaling_activation(self._scaling)
|
199 |
+
|
200 |
+
@property
|
201 |
+
def get_rotation(self):
|
202 |
+
return self.rotation_activation(self._rotation)
|
203 |
+
|
204 |
+
@property
|
205 |
+
def get_xyz(self):
|
206 |
+
return self._xyz
|
207 |
+
|
208 |
+
@property
|
209 |
+
def get_features(self):
|
210 |
+
features_dc = self._features_dc
|
211 |
+
features_rest = self._features_rest
|
212 |
+
return torch.cat((features_dc, features_rest), dim=1)
|
213 |
+
|
214 |
+
@property
|
215 |
+
def get_opacity(self):
|
216 |
+
return self.opacity_activation(self._opacity)
|
217 |
+
|
218 |
+
@torch.no_grad()
|
219 |
+
def extract_fields(self, resolution=128, num_blocks=16, relax_ratio=1.5):
|
220 |
+
# resolution: resolution of field
|
221 |
+
|
222 |
+
block_size = 2 / num_blocks
|
223 |
+
|
224 |
+
assert resolution % block_size == 0
|
225 |
+
split_size = resolution // num_blocks
|
226 |
+
|
227 |
+
opacities = self.get_opacity
|
228 |
+
|
229 |
+
# pre-filter low opacity gaussians to save computation
|
230 |
+
mask = (opacities > 0.005).squeeze(1)
|
231 |
+
|
232 |
+
opacities = opacities[mask]
|
233 |
+
xyzs = self.get_xyz[mask]
|
234 |
+
stds = self.get_scaling[mask]
|
235 |
+
|
236 |
+
# normalize to ~ [-1, 1]
|
237 |
+
mn, mx = xyzs.amin(0), xyzs.amax(0)
|
238 |
+
self.center = (mn + mx) / 2
|
239 |
+
self.scale = 1.8 / (mx - mn).amax().item()
|
240 |
+
|
241 |
+
xyzs = (xyzs - self.center) * self.scale
|
242 |
+
stds = stds * self.scale
|
243 |
+
|
244 |
+
covs = self.covariance_activation(stds, 1, self._rotation[mask])
|
245 |
+
|
246 |
+
# tile
|
247 |
+
device = opacities.device
|
248 |
+
occ = torch.zeros([resolution] * 3, dtype=torch.float32, device=device)
|
249 |
+
|
250 |
+
X = torch.linspace(-1, 1, resolution).split(split_size)
|
251 |
+
Y = torch.linspace(-1, 1, resolution).split(split_size)
|
252 |
+
Z = torch.linspace(-1, 1, resolution).split(split_size)
|
253 |
+
|
254 |
+
|
255 |
+
# loop blocks (assume max size of gaussian is small than relax_ratio * block_size !!!)
|
256 |
+
for xi, xs in enumerate(X):
|
257 |
+
for yi, ys in enumerate(Y):
|
258 |
+
for zi, zs in enumerate(Z):
|
259 |
+
xx, yy, zz = torch.meshgrid(xs, ys, zs)
|
260 |
+
# sample points [M, 3]
|
261 |
+
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1).to(device)
|
262 |
+
# in-tile gaussians mask
|
263 |
+
vmin, vmax = pts.amin(0), pts.amax(0)
|
264 |
+
vmin -= block_size * relax_ratio
|
265 |
+
vmax += block_size * relax_ratio
|
266 |
+
mask = (xyzs < vmax).all(-1) & (xyzs > vmin).all(-1)
|
267 |
+
# if hit no gaussian, continue to next block
|
268 |
+
if not mask.any():
|
269 |
+
continue
|
270 |
+
mask_xyzs = xyzs[mask] # [L, 3]
|
271 |
+
mask_covs = covs[mask] # [L, 6]
|
272 |
+
mask_opas = opacities[mask].view(1, -1) # [L, 1] --> [1, L]
|
273 |
+
|
274 |
+
# query per point-gaussian pair.
|
275 |
+
g_pts = pts.unsqueeze(1).repeat(1, mask_covs.shape[0], 1) - mask_xyzs.unsqueeze(0) # [M, L, 3]
|
276 |
+
g_covs = mask_covs.unsqueeze(0).repeat(pts.shape[0], 1, 1) # [M, L, 6]
|
277 |
+
|
278 |
+
# batch on gaussian to avoid OOM
|
279 |
+
batch_g = 1024
|
280 |
+
val = 0
|
281 |
+
for start in range(0, g_covs.shape[1], batch_g):
|
282 |
+
end = min(start + batch_g, g_covs.shape[1])
|
283 |
+
w = gaussian_3d_coeff(g_pts[:, start:end].reshape(-1, 3), g_covs[:, start:end].reshape(-1, 6)).reshape(pts.shape[0], -1) # [M, l]
|
284 |
+
val += (mask_opas[:, start:end] * w).sum(-1)
|
285 |
+
|
286 |
+
# kiui.lo(val, mask_opas, w)
|
287 |
+
|
288 |
+
occ[xi * split_size: xi * split_size + len(xs),
|
289 |
+
yi * split_size: yi * split_size + len(ys),
|
290 |
+
zi * split_size: zi * split_size + len(zs)] = val.reshape(len(xs), len(ys), len(zs))
|
291 |
+
|
292 |
+
kiui.lo(occ, verbose=1)
|
293 |
+
|
294 |
+
return occ
|
295 |
+
|
296 |
+
def extract_mesh(self, path, density_thresh=1, resolution=128, decimate_target=1e5):
|
297 |
+
|
298 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
299 |
+
|
300 |
+
occ = self.extract_fields(resolution).detach().cpu().numpy()
|
301 |
+
|
302 |
+
import mcubes
|
303 |
+
vertices, triangles = mcubes.marching_cubes(occ, density_thresh)
|
304 |
+
vertices = vertices / (resolution - 1.0) * 2 - 1
|
305 |
+
|
306 |
+
# transform back to the original space
|
307 |
+
vertices = vertices / self.scale + self.center.detach().cpu().numpy()
|
308 |
+
|
309 |
+
vertices, triangles = clean_mesh(vertices, triangles, remesh=True, remesh_size=0.015)
|
310 |
+
if decimate_target > 0 and triangles.shape[0] > decimate_target:
|
311 |
+
vertices, triangles = decimate_mesh(vertices, triangles, decimate_target)
|
312 |
+
|
313 |
+
v = torch.from_numpy(vertices.astype(np.float32)).contiguous().cuda()
|
314 |
+
f = torch.from_numpy(triangles.astype(np.int32)).contiguous().cuda()
|
315 |
+
|
316 |
+
print(
|
317 |
+
f"[INFO] marching cubes result: {v.shape} ({v.min().item()}-{v.max().item()}), {f.shape}"
|
318 |
+
)
|
319 |
+
|
320 |
+
mesh = Mesh(v=v, f=f, device='cuda')
|
321 |
+
|
322 |
+
return mesh
|
323 |
+
|
324 |
+
def get_covariance(self, scaling_modifier = 1):
|
325 |
+
return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation)
|
326 |
+
|
327 |
+
def oneupSHdegree(self):
|
328 |
+
if self.active_sh_degree < self.max_sh_degree:
|
329 |
+
self.active_sh_degree += 1
|
330 |
+
|
331 |
+
def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float = 1):
|
332 |
+
self.spatial_lr_scale = spatial_lr_scale
|
333 |
+
fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda()
|
334 |
+
fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda())
|
335 |
+
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
|
336 |
+
features[:, :3, 0 ] = fused_color
|
337 |
+
features[:, 3:, 1:] = 0.0
|
338 |
+
|
339 |
+
print("Number of points at initialisation : ", fused_point_cloud.shape[0])
|
340 |
+
|
341 |
+
dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001)
|
342 |
+
scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3)
|
343 |
+
rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda")
|
344 |
+
rots[:, 0] = 1
|
345 |
+
|
346 |
+
opacities = inverse_sigmoid(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda"))
|
347 |
+
|
348 |
+
self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True))
|
349 |
+
self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True))
|
350 |
+
self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True))
|
351 |
+
self._scaling = nn.Parameter(scales.requires_grad_(True))
|
352 |
+
self._rotation = nn.Parameter(rots.requires_grad_(True))
|
353 |
+
self._opacity = nn.Parameter(opacities.requires_grad_(True))
|
354 |
+
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
|
355 |
+
|
356 |
+
def training_setup(self, training_args):
|
357 |
+
self.percent_dense = training_args.percent_dense
|
358 |
+
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
|
359 |
+
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
|
360 |
+
|
361 |
+
l = [
|
362 |
+
{'params': [self._xyz], 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"},
|
363 |
+
{'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"},
|
364 |
+
{'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"},
|
365 |
+
{'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"},
|
366 |
+
{'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"},
|
367 |
+
{'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"}
|
368 |
+
]
|
369 |
+
|
370 |
+
self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15)
|
371 |
+
self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale,
|
372 |
+
lr_final=training_args.position_lr_final*self.spatial_lr_scale,
|
373 |
+
lr_delay_mult=training_args.position_lr_delay_mult,
|
374 |
+
max_steps=training_args.position_lr_max_steps)
|
375 |
+
|
376 |
+
def update_learning_rate(self, iteration):
|
377 |
+
''' Learning rate scheduling per step '''
|
378 |
+
for param_group in self.optimizer.param_groups:
|
379 |
+
if param_group["name"] == "xyz":
|
380 |
+
lr = self.xyz_scheduler_args(iteration)
|
381 |
+
param_group['lr'] = lr
|
382 |
+
return lr
|
383 |
+
|
384 |
+
def construct_list_of_attributes(self):
|
385 |
+
l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
|
386 |
+
# All channels except the 3 DC
|
387 |
+
for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]):
|
388 |
+
l.append('f_dc_{}'.format(i))
|
389 |
+
for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]):
|
390 |
+
l.append('f_rest_{}'.format(i))
|
391 |
+
l.append('opacity')
|
392 |
+
for i in range(self._scaling.shape[1]):
|
393 |
+
l.append('scale_{}'.format(i))
|
394 |
+
for i in range(self._rotation.shape[1]):
|
395 |
+
l.append('rot_{}'.format(i))
|
396 |
+
return l
|
397 |
+
|
398 |
+
def save_ply(self, path):
|
399 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
400 |
+
|
401 |
+
xyz = self._xyz.detach().cpu().numpy()
|
402 |
+
normals = np.zeros_like(xyz)
|
403 |
+
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
|
404 |
+
f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
|
405 |
+
opacities = self._opacity.detach().cpu().numpy()
|
406 |
+
scale = self._scaling.detach().cpu().numpy()
|
407 |
+
rotation = self._rotation.detach().cpu().numpy()
|
408 |
+
|
409 |
+
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
|
410 |
+
|
411 |
+
elements = np.empty(xyz.shape[0], dtype=dtype_full)
|
412 |
+
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
|
413 |
+
elements[:] = list(map(tuple, attributes))
|
414 |
+
el = PlyElement.describe(elements, 'vertex')
|
415 |
+
PlyData([el]).write(path)
|
416 |
+
|
417 |
+
def reset_opacity(self):
|
418 |
+
opacities_new = inverse_sigmoid(torch.min(self.get_opacity, torch.ones_like(self.get_opacity)*0.01))
|
419 |
+
optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity")
|
420 |
+
self._opacity = optimizable_tensors["opacity"]
|
421 |
+
|
422 |
+
def load_ply(self, path):
|
423 |
+
plydata = PlyData.read(path)
|
424 |
+
|
425 |
+
xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
|
426 |
+
np.asarray(plydata.elements[0]["y"]),
|
427 |
+
np.asarray(plydata.elements[0]["z"])), axis=1)
|
428 |
+
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
|
429 |
+
|
430 |
+
print("Number of points at loading : ", xyz.shape[0])
|
431 |
+
|
432 |
+
features_dc = np.zeros((xyz.shape[0], 3, 1))
|
433 |
+
features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
|
434 |
+
features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"])
|
435 |
+
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])
|
436 |
+
|
437 |
+
extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")]
|
438 |
+
assert len(extra_f_names)==3*(self.max_sh_degree + 1) ** 2 - 3
|
439 |
+
features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
|
440 |
+
for idx, attr_name in enumerate(extra_f_names):
|
441 |
+
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
442 |
+
# Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
|
443 |
+
features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1))
|
444 |
+
|
445 |
+
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
|
446 |
+
scales = np.zeros((xyz.shape[0], len(scale_names)))
|
447 |
+
for idx, attr_name in enumerate(scale_names):
|
448 |
+
scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
449 |
+
|
450 |
+
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")]
|
451 |
+
rots = np.zeros((xyz.shape[0], len(rot_names)))
|
452 |
+
for idx, attr_name in enumerate(rot_names):
|
453 |
+
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
454 |
+
|
455 |
+
self._xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cuda").requires_grad_(True))
|
456 |
+
self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
|
457 |
+
self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
|
458 |
+
self._opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cuda").requires_grad_(True))
|
459 |
+
self._scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cuda").requires_grad_(True))
|
460 |
+
self._rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cuda").requires_grad_(True))
|
461 |
+
|
462 |
+
self.active_sh_degree = self.max_sh_degree
|
463 |
+
|
464 |
+
def replace_tensor_to_optimizer(self, tensor, name):
|
465 |
+
optimizable_tensors = {}
|
466 |
+
for group in self.optimizer.param_groups:
|
467 |
+
if group["name"] == name:
|
468 |
+
stored_state = self.optimizer.state.get(group['params'][0], None)
|
469 |
+
stored_state["exp_avg"] = torch.zeros_like(tensor)
|
470 |
+
stored_state["exp_avg_sq"] = torch.zeros_like(tensor)
|
471 |
+
|
472 |
+
del self.optimizer.state[group['params'][0]]
|
473 |
+
group["params"][0] = nn.Parameter(tensor.requires_grad_(True))
|
474 |
+
self.optimizer.state[group['params'][0]] = stored_state
|
475 |
+
|
476 |
+
optimizable_tensors[group["name"]] = group["params"][0]
|
477 |
+
return optimizable_tensors
|
478 |
+
|
479 |
+
def _prune_optimizer(self, mask):
|
480 |
+
optimizable_tensors = {}
|
481 |
+
for group in self.optimizer.param_groups:
|
482 |
+
stored_state = self.optimizer.state.get(group['params'][0], None)
|
483 |
+
if stored_state is not None:
|
484 |
+
stored_state["exp_avg"] = stored_state["exp_avg"][mask]
|
485 |
+
stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask]
|
486 |
+
|
487 |
+
del self.optimizer.state[group['params'][0]]
|
488 |
+
group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True)))
|
489 |
+
self.optimizer.state[group['params'][0]] = stored_state
|
490 |
+
|
491 |
+
optimizable_tensors[group["name"]] = group["params"][0]
|
492 |
+
else:
|
493 |
+
group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True))
|
494 |
+
optimizable_tensors[group["name"]] = group["params"][0]
|
495 |
+
return optimizable_tensors
|
496 |
+
|
497 |
+
def prune_points(self, mask):
|
498 |
+
valid_points_mask = ~mask
|
499 |
+
optimizable_tensors = self._prune_optimizer(valid_points_mask)
|
500 |
+
|
501 |
+
self._xyz = optimizable_tensors["xyz"]
|
502 |
+
self._features_dc = optimizable_tensors["f_dc"]
|
503 |
+
self._features_rest = optimizable_tensors["f_rest"]
|
504 |
+
self._opacity = optimizable_tensors["opacity"]
|
505 |
+
self._scaling = optimizable_tensors["scaling"]
|
506 |
+
self._rotation = optimizable_tensors["rotation"]
|
507 |
+
|
508 |
+
self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask]
|
509 |
+
|
510 |
+
self.denom = self.denom[valid_points_mask]
|
511 |
+
self.max_radii2D = self.max_radii2D[valid_points_mask]
|
512 |
+
|
513 |
+
def cat_tensors_to_optimizer(self, tensors_dict):
|
514 |
+
optimizable_tensors = {}
|
515 |
+
for group in self.optimizer.param_groups:
|
516 |
+
assert len(group["params"]) == 1
|
517 |
+
extension_tensor = tensors_dict[group["name"]]
|
518 |
+
stored_state = self.optimizer.state.get(group['params'][0], None)
|
519 |
+
if stored_state is not None:
|
520 |
+
|
521 |
+
stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0)
|
522 |
+
stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0)
|
523 |
+
|
524 |
+
del self.optimizer.state[group['params'][0]]
|
525 |
+
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
|
526 |
+
self.optimizer.state[group['params'][0]] = stored_state
|
527 |
+
|
528 |
+
optimizable_tensors[group["name"]] = group["params"][0]
|
529 |
+
else:
|
530 |
+
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
|
531 |
+
optimizable_tensors[group["name"]] = group["params"][0]
|
532 |
+
|
533 |
+
return optimizable_tensors
|
534 |
+
|
535 |
+
def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation):
|
536 |
+
d = {"xyz": new_xyz,
|
537 |
+
"f_dc": new_features_dc,
|
538 |
+
"f_rest": new_features_rest,
|
539 |
+
"opacity": new_opacities,
|
540 |
+
"scaling" : new_scaling,
|
541 |
+
"rotation" : new_rotation}
|
542 |
+
|
543 |
+
optimizable_tensors = self.cat_tensors_to_optimizer(d)
|
544 |
+
self._xyz = optimizable_tensors["xyz"]
|
545 |
+
self._features_dc = optimizable_tensors["f_dc"]
|
546 |
+
self._features_rest = optimizable_tensors["f_rest"]
|
547 |
+
self._opacity = optimizable_tensors["opacity"]
|
548 |
+
self._scaling = optimizable_tensors["scaling"]
|
549 |
+
self._rotation = optimizable_tensors["rotation"]
|
550 |
+
|
551 |
+
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
|
552 |
+
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
|
553 |
+
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
|
554 |
+
|
555 |
+
def densify_and_split(self, grads, grad_threshold, scene_extent, N=2):
|
556 |
+
n_init_points = self.get_xyz.shape[0]
|
557 |
+
# Extract points that satisfy the gradient condition
|
558 |
+
padded_grad = torch.zeros((n_init_points), device="cuda")
|
559 |
+
padded_grad[:grads.shape[0]] = grads.squeeze()
|
560 |
+
selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False)
|
561 |
+
selected_pts_mask = torch.logical_and(selected_pts_mask,
|
562 |
+
torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent)
|
563 |
+
|
564 |
+
stds = self.get_scaling[selected_pts_mask].repeat(N,1)
|
565 |
+
means =torch.zeros((stds.size(0), 3),device="cuda")
|
566 |
+
samples = torch.normal(mean=means, std=stds)
|
567 |
+
rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1)
|
568 |
+
new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1)
|
569 |
+
new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N))
|
570 |
+
new_rotation = self._rotation[selected_pts_mask].repeat(N,1)
|
571 |
+
new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1)
|
572 |
+
new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1)
|
573 |
+
new_opacity = self._opacity[selected_pts_mask].repeat(N,1)
|
574 |
+
|
575 |
+
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacity, new_scaling, new_rotation)
|
576 |
+
|
577 |
+
prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool)))
|
578 |
+
self.prune_points(prune_filter)
|
579 |
+
|
580 |
+
def densify_and_clone(self, grads, grad_threshold, scene_extent):
|
581 |
+
# Extract points that satisfy the gradient condition
|
582 |
+
selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False)
|
583 |
+
selected_pts_mask = torch.logical_and(selected_pts_mask,
|
584 |
+
torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent)
|
585 |
+
|
586 |
+
new_xyz = self._xyz[selected_pts_mask]
|
587 |
+
new_features_dc = self._features_dc[selected_pts_mask]
|
588 |
+
new_features_rest = self._features_rest[selected_pts_mask]
|
589 |
+
new_opacities = self._opacity[selected_pts_mask]
|
590 |
+
new_scaling = self._scaling[selected_pts_mask]
|
591 |
+
new_rotation = self._rotation[selected_pts_mask]
|
592 |
+
|
593 |
+
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation)
|
594 |
+
|
595 |
+
def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size):
|
596 |
+
grads = self.xyz_gradient_accum / self.denom
|
597 |
+
grads[grads.isnan()] = 0.0
|
598 |
+
|
599 |
+
self.densify_and_clone(grads, max_grad, extent)
|
600 |
+
self.densify_and_split(grads, max_grad, extent)
|
601 |
+
|
602 |
+
prune_mask = (self.get_opacity < min_opacity).squeeze()
|
603 |
+
if max_screen_size:
|
604 |
+
big_points_vs = self.max_radii2D > max_screen_size
|
605 |
+
big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent
|
606 |
+
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
|
607 |
+
self.prune_points(prune_mask)
|
608 |
+
|
609 |
+
torch.cuda.empty_cache()
|
610 |
+
|
611 |
+
def prune(self, min_opacity, extent, max_screen_size):
|
612 |
+
|
613 |
+
prune_mask = (self.get_opacity < min_opacity).squeeze()
|
614 |
+
if max_screen_size:
|
615 |
+
big_points_vs = self.max_radii2D > max_screen_size
|
616 |
+
big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent
|
617 |
+
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
|
618 |
+
self.prune_points(prune_mask)
|
619 |
+
|
620 |
+
torch.cuda.empty_cache()
|
621 |
+
|
622 |
+
|
623 |
+
def add_densification_stats(self, viewspace_point_tensor, update_filter):
|
624 |
+
self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,:2], dim=-1, keepdim=True)
|
625 |
+
self.denom[update_filter] += 1
|
626 |
+
|
627 |
+
def getProjectionMatrix(znear, zfar, fovX, fovY):
|
628 |
+
tanHalfFovY = math.tan((fovY / 2))
|
629 |
+
tanHalfFovX = math.tan((fovX / 2))
|
630 |
+
|
631 |
+
P = torch.zeros(4, 4)
|
632 |
+
|
633 |
+
z_sign = 1.0
|
634 |
+
|
635 |
+
P[0, 0] = 1 / tanHalfFovX
|
636 |
+
P[1, 1] = 1 / tanHalfFovY
|
637 |
+
P[3, 2] = z_sign
|
638 |
+
P[2, 2] = z_sign * zfar / (zfar - znear)
|
639 |
+
P[2, 3] = -(zfar * znear) / (zfar - znear)
|
640 |
+
return P
|
641 |
+
|
642 |
+
|
643 |
+
class MiniCam:
|
644 |
+
def __init__(self, c2w, width, height, fovy, fovx, znear, zfar):
|
645 |
+
# c2w (pose) should be in NeRF convention.
|
646 |
+
|
647 |
+
self.image_width = width
|
648 |
+
self.image_height = height
|
649 |
+
self.FoVy = fovy
|
650 |
+
self.FoVx = fovx
|
651 |
+
self.znear = znear
|
652 |
+
self.zfar = zfar
|
653 |
+
|
654 |
+
w2c = np.linalg.inv(c2w)
|
655 |
+
|
656 |
+
# rectify...
|
657 |
+
w2c[1:3, :3] *= -1
|
658 |
+
w2c[:3, 3] *= -1
|
659 |
+
|
660 |
+
self.world_view_transform = torch.tensor(w2c).transpose(0, 1).cuda()
|
661 |
+
self.projection_matrix = (
|
662 |
+
getProjectionMatrix(
|
663 |
+
znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy
|
664 |
+
)
|
665 |
+
.transpose(0, 1)
|
666 |
+
.cuda()
|
667 |
+
)
|
668 |
+
self.full_proj_transform = self.world_view_transform @ self.projection_matrix
|
669 |
+
self.camera_center = -torch.tensor(c2w[:3, 3]).cuda()
|
670 |
+
|
671 |
+
|
672 |
+
class Renderer:
|
673 |
+
def __init__(self, sh_degree=3, white_background=True, radius=1):
|
674 |
+
|
675 |
+
self.sh_degree = sh_degree
|
676 |
+
self.white_background = white_background
|
677 |
+
self.radius = radius
|
678 |
+
|
679 |
+
self.gaussians = GaussianModel(sh_degree)
|
680 |
+
|
681 |
+
self.bg_color = torch.tensor(
|
682 |
+
[1, 1, 1] if white_background else [0, 0, 0],
|
683 |
+
dtype=torch.float32,
|
684 |
+
device="cuda",
|
685 |
+
)
|
686 |
+
|
687 |
+
def initialize(self, input=None, num_pts=5000, radius=0.5):
|
688 |
+
# load checkpoint
|
689 |
+
if input is None:
|
690 |
+
# init from random point cloud
|
691 |
+
|
692 |
+
phis = np.random.random((num_pts,)) * 2 * np.pi
|
693 |
+
costheta = np.random.random((num_pts,)) * 2 - 1
|
694 |
+
thetas = np.arccos(costheta)
|
695 |
+
mu = np.random.random((num_pts,))
|
696 |
+
radius = radius * np.cbrt(mu)
|
697 |
+
x = radius * np.sin(thetas) * np.cos(phis)
|
698 |
+
y = radius * np.sin(thetas) * np.sin(phis)
|
699 |
+
z = radius * np.cos(thetas)
|
700 |
+
xyz = np.stack((x, y, z), axis=1)
|
701 |
+
# xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3
|
702 |
+
|
703 |
+
shs = np.random.random((num_pts, 3)) / 255.0
|
704 |
+
pcd = BasicPointCloud(
|
705 |
+
points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3))
|
706 |
+
)
|
707 |
+
self.gaussians.create_from_pcd(pcd, 10)
|
708 |
+
elif isinstance(input, BasicPointCloud):
|
709 |
+
# load from a provided pcd
|
710 |
+
self.gaussians.create_from_pcd(input, 1)
|
711 |
+
else:
|
712 |
+
# load from saved ply
|
713 |
+
self.gaussians.load_ply(input)
|
714 |
+
|
715 |
+
def render(
|
716 |
+
self,
|
717 |
+
viewpoint_camera,
|
718 |
+
scaling_modifier=1.0,
|
719 |
+
invert_bg_color=False,
|
720 |
+
override_color=None,
|
721 |
+
compute_cov3D_python=False,
|
722 |
+
convert_SHs_python=False,
|
723 |
+
):
|
724 |
+
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
|
725 |
+
screenspace_points = (
|
726 |
+
torch.zeros_like(
|
727 |
+
self.gaussians.get_xyz,
|
728 |
+
dtype=self.gaussians.get_xyz.dtype,
|
729 |
+
requires_grad=True,
|
730 |
+
device="cuda",
|
731 |
+
)
|
732 |
+
+ 0
|
733 |
+
)
|
734 |
+
try:
|
735 |
+
screenspace_points.retain_grad()
|
736 |
+
except:
|
737 |
+
pass
|
738 |
+
|
739 |
+
# Set up rasterization configuration
|
740 |
+
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
741 |
+
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
742 |
+
|
743 |
+
raster_settings = GaussianRasterizationSettings(
|
744 |
+
image_height=int(viewpoint_camera.image_height),
|
745 |
+
image_width=int(viewpoint_camera.image_width),
|
746 |
+
tanfovx=tanfovx,
|
747 |
+
tanfovy=tanfovy,
|
748 |
+
bg=self.bg_color if not invert_bg_color else 1 - self.bg_color,
|
749 |
+
scale_modifier=scaling_modifier,
|
750 |
+
viewmatrix=viewpoint_camera.world_view_transform,
|
751 |
+
projmatrix=viewpoint_camera.full_proj_transform,
|
752 |
+
sh_degree=self.gaussians.active_sh_degree,
|
753 |
+
campos=viewpoint_camera.camera_center,
|
754 |
+
prefiltered=False,
|
755 |
+
debug=False,
|
756 |
+
)
|
757 |
+
|
758 |
+
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
759 |
+
|
760 |
+
means3D = self.gaussians.get_xyz
|
761 |
+
means2D = screenspace_points
|
762 |
+
opacity = self.gaussians.get_opacity
|
763 |
+
|
764 |
+
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
|
765 |
+
# scaling / rotation by the rasterizer.
|
766 |
+
scales = None
|
767 |
+
rotations = None
|
768 |
+
cov3D_precomp = None
|
769 |
+
if compute_cov3D_python:
|
770 |
+
cov3D_precomp = self.gaussians.get_covariance(scaling_modifier)
|
771 |
+
else:
|
772 |
+
scales = self.gaussians.get_scaling
|
773 |
+
rotations = self.gaussians.get_rotation
|
774 |
+
|
775 |
+
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
|
776 |
+
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
|
777 |
+
shs = None
|
778 |
+
colors_precomp = None
|
779 |
+
if colors_precomp is None:
|
780 |
+
if convert_SHs_python:
|
781 |
+
shs_view = self.gaussians.get_features.transpose(1, 2).view(
|
782 |
+
-1, 3, (self.gaussians.max_sh_degree + 1) ** 2
|
783 |
+
)
|
784 |
+
dir_pp = self.gaussians.get_xyz - viewpoint_camera.camera_center.repeat(
|
785 |
+
self.gaussians.get_features.shape[0], 1
|
786 |
+
)
|
787 |
+
dir_pp_normalized = dir_pp / dir_pp.norm(dim=1, keepdim=True)
|
788 |
+
sh2rgb = eval_sh(
|
789 |
+
self.gaussians.active_sh_degree, shs_view, dir_pp_normalized
|
790 |
+
)
|
791 |
+
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
|
792 |
+
else:
|
793 |
+
shs = self.gaussians.get_features
|
794 |
+
else:
|
795 |
+
colors_precomp = override_color
|
796 |
+
|
797 |
+
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
798 |
+
rendered_image, radii, rendered_depth, rendered_alpha = rasterizer(
|
799 |
+
means3D=means3D,
|
800 |
+
means2D=means2D,
|
801 |
+
shs=shs,
|
802 |
+
colors_precomp=colors_precomp,
|
803 |
+
opacities=opacity,
|
804 |
+
scales=scales,
|
805 |
+
rotations=rotations,
|
806 |
+
cov3D_precomp=cov3D_precomp,
|
807 |
+
)
|
808 |
+
|
809 |
+
rendered_image = rendered_image.clamp(0, 1)
|
810 |
+
|
811 |
+
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
|
812 |
+
# They will be excluded from value updates used in the splitting criteria.
|
813 |
+
return {
|
814 |
+
"image": rendered_image,
|
815 |
+
"depth": rendered_depth,
|
816 |
+
"alpha": rendered_alpha,
|
817 |
+
"viewspace_points": screenspace_points,
|
818 |
+
"visibility_filter": radii > 0,
|
819 |
+
"radii": radii,
|
820 |
+
}
|
main.py
ADDED
@@ -0,0 +1,882 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
import tqdm
|
5 |
+
import numpy as np
|
6 |
+
# import dearpygui.dearpygui as dpg
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
import rembg
|
12 |
+
|
13 |
+
from cam_utils import orbit_camera, OrbitCamera
|
14 |
+
from gs_renderer import Renderer, MiniCam
|
15 |
+
|
16 |
+
from grid_put import mipmap_linear_grid_put_2d
|
17 |
+
from mesh import Mesh, safe_normalize
|
18 |
+
|
19 |
+
class GUI:
|
20 |
+
def __init__(self, opt):
|
21 |
+
self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
|
22 |
+
self.gui = opt.gui # enable gui
|
23 |
+
self.W = opt.W
|
24 |
+
self.H = opt.H
|
25 |
+
self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius, fovy=opt.fovy)
|
26 |
+
|
27 |
+
self.mode = "image"
|
28 |
+
self.seed = "random"
|
29 |
+
|
30 |
+
self.buffer_image = np.ones((self.W, self.H, 3), dtype=np.float32)
|
31 |
+
self.need_update = True # update buffer_image
|
32 |
+
|
33 |
+
# models
|
34 |
+
self.device = torch.device("cuda")
|
35 |
+
self.bg_remover = None
|
36 |
+
|
37 |
+
self.guidance_sd = None
|
38 |
+
self.guidance_zero123 = None
|
39 |
+
|
40 |
+
self.enable_sd = False
|
41 |
+
self.enable_zero123 = False
|
42 |
+
|
43 |
+
# renderer
|
44 |
+
self.renderer = Renderer(sh_degree=self.opt.sh_degree)
|
45 |
+
self.gaussain_scale_factor = 1
|
46 |
+
|
47 |
+
# input image
|
48 |
+
self.input_img = None
|
49 |
+
self.input_mask = None
|
50 |
+
self.input_img_torch = None
|
51 |
+
self.input_mask_torch = None
|
52 |
+
self.overlay_input_img = False
|
53 |
+
self.overlay_input_img_ratio = 0.5
|
54 |
+
|
55 |
+
# input text
|
56 |
+
self.prompt = ""
|
57 |
+
self.negative_prompt = ""
|
58 |
+
|
59 |
+
# training stuff
|
60 |
+
self.training = False
|
61 |
+
self.optimizer = None
|
62 |
+
self.step = 0
|
63 |
+
self.train_steps = 1 # steps per rendering loop
|
64 |
+
|
65 |
+
# load input data from cmdline
|
66 |
+
if self.opt.input is not None:
|
67 |
+
self.load_input(self.opt.input)
|
68 |
+
|
69 |
+
# override prompt from cmdline
|
70 |
+
if self.opt.prompt is not None:
|
71 |
+
self.prompt = self.opt.prompt
|
72 |
+
|
73 |
+
# override if provide a checkpoint
|
74 |
+
if self.opt.load is not None:
|
75 |
+
self.renderer.initialize(self.opt.load)
|
76 |
+
else:
|
77 |
+
# initialize gaussians to a blob
|
78 |
+
self.renderer.initialize(num_pts=self.opt.num_pts)
|
79 |
+
|
80 |
+
if self.gui:
|
81 |
+
dpg.create_context()
|
82 |
+
self.register_dpg()
|
83 |
+
self.test_step()
|
84 |
+
|
85 |
+
def __del__(self):
|
86 |
+
if self.gui:
|
87 |
+
dpg.destroy_context()
|
88 |
+
|
89 |
+
def seed_everything(self):
|
90 |
+
try:
|
91 |
+
seed = int(self.seed)
|
92 |
+
except:
|
93 |
+
seed = np.random.randint(0, 1000000)
|
94 |
+
|
95 |
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
96 |
+
np.random.seed(seed)
|
97 |
+
torch.manual_seed(seed)
|
98 |
+
torch.cuda.manual_seed(seed)
|
99 |
+
torch.backends.cudnn.deterministic = True
|
100 |
+
torch.backends.cudnn.benchmark = True
|
101 |
+
|
102 |
+
self.last_seed = seed
|
103 |
+
|
104 |
+
def prepare_train(self):
|
105 |
+
|
106 |
+
self.step = 0
|
107 |
+
|
108 |
+
# setup training
|
109 |
+
self.renderer.gaussians.training_setup(self.opt)
|
110 |
+
# do not do progressive sh-level
|
111 |
+
self.renderer.gaussians.active_sh_degree = self.renderer.gaussians.max_sh_degree
|
112 |
+
self.optimizer = self.renderer.gaussians.optimizer
|
113 |
+
|
114 |
+
# default camera
|
115 |
+
pose = orbit_camera(self.opt.elevation, 0, self.opt.radius)
|
116 |
+
self.fixed_cam = MiniCam(
|
117 |
+
pose,
|
118 |
+
self.opt.ref_size,
|
119 |
+
self.opt.ref_size,
|
120 |
+
self.cam.fovy,
|
121 |
+
self.cam.fovx,
|
122 |
+
self.cam.near,
|
123 |
+
self.cam.far,
|
124 |
+
)
|
125 |
+
|
126 |
+
self.enable_sd = self.opt.lambda_sd > 0 and self.prompt != ""
|
127 |
+
self.enable_zero123 = self.opt.lambda_zero123 > 0 and self.input_img is not None
|
128 |
+
|
129 |
+
# lazy load guidance model
|
130 |
+
if self.guidance_sd is None and self.enable_sd:
|
131 |
+
print(f"[INFO] loading SD...")
|
132 |
+
from guidance.sd_utils import StableDiffusion
|
133 |
+
self.guidance_sd = StableDiffusion(self.device)
|
134 |
+
print(f"[INFO] loaded SD!")
|
135 |
+
|
136 |
+
if self.guidance_zero123 is None and self.enable_zero123:
|
137 |
+
print(f"[INFO] loading zero123...")
|
138 |
+
from guidance.zero123_utils import Zero123
|
139 |
+
self.guidance_zero123 = Zero123(self.device)
|
140 |
+
print(f"[INFO] loaded zero123!")
|
141 |
+
|
142 |
+
# input image
|
143 |
+
if self.input_img is not None:
|
144 |
+
self.input_img_torch = torch.from_numpy(self.input_img).permute(2, 0, 1).unsqueeze(0).to(self.device)
|
145 |
+
self.input_img_torch = F.interpolate(self.input_img_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)
|
146 |
+
|
147 |
+
self.input_mask_torch = torch.from_numpy(self.input_mask).permute(2, 0, 1).unsqueeze(0).to(self.device)
|
148 |
+
self.input_mask_torch = F.interpolate(self.input_mask_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)
|
149 |
+
|
150 |
+
# prepare embeddings
|
151 |
+
with torch.no_grad():
|
152 |
+
|
153 |
+
if self.enable_sd:
|
154 |
+
self.guidance_sd.get_text_embeds([self.prompt], [self.negative_prompt])
|
155 |
+
|
156 |
+
if self.enable_zero123:
|
157 |
+
self.guidance_zero123.get_img_embeds(self.input_img_torch)
|
158 |
+
|
159 |
+
def train_step(self):
|
160 |
+
starter = torch.cuda.Event(enable_timing=True)
|
161 |
+
ender = torch.cuda.Event(enable_timing=True)
|
162 |
+
starter.record()
|
163 |
+
|
164 |
+
for _ in range(self.train_steps):
|
165 |
+
|
166 |
+
self.step += 1
|
167 |
+
step_ratio = min(1, self.step / self.opt.iters)
|
168 |
+
|
169 |
+
# update lr
|
170 |
+
self.renderer.gaussians.update_learning_rate(self.step)
|
171 |
+
|
172 |
+
loss = 0
|
173 |
+
|
174 |
+
### known view
|
175 |
+
if self.input_img_torch is not None:
|
176 |
+
cur_cam = self.fixed_cam
|
177 |
+
out = self.renderer.render(cur_cam)
|
178 |
+
|
179 |
+
# rgb loss
|
180 |
+
image = out["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1]
|
181 |
+
loss = loss + 10000 * step_ratio * F.mse_loss(image, self.input_img_torch)
|
182 |
+
|
183 |
+
# mask loss
|
184 |
+
mask = out["alpha"].unsqueeze(0) # [1, 1, H, W] in [0, 1]
|
185 |
+
loss = loss + 1000 * step_ratio * F.mse_loss(mask, self.input_mask_torch)
|
186 |
+
|
187 |
+
### novel view (manual batch)
|
188 |
+
render_resolution = 128 if step_ratio < 0.3 else (256 if step_ratio < 0.6 else 512)
|
189 |
+
images = []
|
190 |
+
vers, hors, radii = [], [], []
|
191 |
+
# avoid too large elevation (> 80 or < -80), and make sure it always cover [-30, 30]
|
192 |
+
min_ver = max(min(-30, -30 - self.opt.elevation), -80 - self.opt.elevation)
|
193 |
+
max_ver = min(max(30, 30 - self.opt.elevation), 80 - self.opt.elevation)
|
194 |
+
for _ in range(self.opt.batch_size):
|
195 |
+
|
196 |
+
# render random view
|
197 |
+
ver = np.random.randint(min_ver, max_ver)
|
198 |
+
hor = np.random.randint(-180, 180)
|
199 |
+
radius = 0
|
200 |
+
|
201 |
+
vers.append(ver)
|
202 |
+
hors.append(hor)
|
203 |
+
radii.append(radius)
|
204 |
+
|
205 |
+
pose = orbit_camera(self.opt.elevation + ver, hor, self.opt.radius + radius)
|
206 |
+
|
207 |
+
cur_cam = MiniCam(
|
208 |
+
pose,
|
209 |
+
render_resolution,
|
210 |
+
render_resolution,
|
211 |
+
self.cam.fovy,
|
212 |
+
self.cam.fovx,
|
213 |
+
self.cam.near,
|
214 |
+
self.cam.far,
|
215 |
+
)
|
216 |
+
|
217 |
+
invert_bg_color = np.random.rand() > self.opt.invert_bg_prob
|
218 |
+
out = self.renderer.render(cur_cam, invert_bg_color=invert_bg_color)
|
219 |
+
|
220 |
+
image = out["image"].unsqueeze(0)# [1, 3, H, W] in [0, 1]
|
221 |
+
images.append(image)
|
222 |
+
|
223 |
+
images = torch.cat(images, dim=0)
|
224 |
+
|
225 |
+
# import kiui
|
226 |
+
# kiui.lo(hor, ver)
|
227 |
+
# kiui.vis.plot_image(image)
|
228 |
+
|
229 |
+
# guidance loss
|
230 |
+
if self.enable_sd:
|
231 |
+
loss = loss + self.opt.lambda_sd * self.guidance_sd.train_step(images, step_ratio)
|
232 |
+
|
233 |
+
if self.enable_zero123:
|
234 |
+
loss = loss + self.opt.lambda_zero123 * self.guidance_zero123.train_step(images, vers, hors, radii, step_ratio)
|
235 |
+
|
236 |
+
# optimize step
|
237 |
+
loss.backward()
|
238 |
+
self.optimizer.step()
|
239 |
+
self.optimizer.zero_grad()
|
240 |
+
|
241 |
+
# densify and prune
|
242 |
+
if self.step >= self.opt.density_start_iter and self.step <= self.opt.density_end_iter:
|
243 |
+
viewspace_point_tensor, visibility_filter, radii = out["viewspace_points"], out["visibility_filter"], out["radii"]
|
244 |
+
self.renderer.gaussians.max_radii2D[visibility_filter] = torch.max(self.renderer.gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
|
245 |
+
self.renderer.gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
|
246 |
+
|
247 |
+
if self.step % self.opt.densification_interval == 0:
|
248 |
+
# size_threshold = 20 if self.step > self.opt.opacity_reset_interval else None
|
249 |
+
self.renderer.gaussians.densify_and_prune(self.opt.densify_grad_threshold, min_opacity=0.01, extent=0.5, max_screen_size=1)
|
250 |
+
|
251 |
+
if self.step % self.opt.opacity_reset_interval == 0:
|
252 |
+
self.renderer.gaussians.reset_opacity()
|
253 |
+
|
254 |
+
ender.record()
|
255 |
+
torch.cuda.synchronize()
|
256 |
+
t = starter.elapsed_time(ender)
|
257 |
+
|
258 |
+
self.need_update = True
|
259 |
+
|
260 |
+
if self.gui:
|
261 |
+
dpg.set_value("_log_train_time", f"{t:.4f}ms")
|
262 |
+
dpg.set_value(
|
263 |
+
"_log_train_log",
|
264 |
+
f"step = {self.step: 5d} (+{self.train_steps: 2d}) loss = {loss.item():.4f}",
|
265 |
+
)
|
266 |
+
|
267 |
+
# dynamic train steps (no need for now)
|
268 |
+
# max allowed train time per-frame is 500 ms
|
269 |
+
# full_t = t / self.train_steps * 16
|
270 |
+
# train_steps = min(16, max(4, int(16 * 500 / full_t)))
|
271 |
+
# if train_steps > self.train_steps * 1.2 or train_steps < self.train_steps * 0.8:
|
272 |
+
# self.train_steps = train_steps
|
273 |
+
|
274 |
+
@torch.no_grad()
|
275 |
+
def test_step(self):
|
276 |
+
# ignore if no need to update
|
277 |
+
if not self.need_update:
|
278 |
+
return
|
279 |
+
|
280 |
+
starter = torch.cuda.Event(enable_timing=True)
|
281 |
+
ender = torch.cuda.Event(enable_timing=True)
|
282 |
+
starter.record()
|
283 |
+
|
284 |
+
# should update image
|
285 |
+
if self.need_update:
|
286 |
+
# render image
|
287 |
+
|
288 |
+
cur_cam = MiniCam(
|
289 |
+
self.cam.pose,
|
290 |
+
self.W,
|
291 |
+
self.H,
|
292 |
+
self.cam.fovy,
|
293 |
+
self.cam.fovx,
|
294 |
+
self.cam.near,
|
295 |
+
self.cam.far,
|
296 |
+
)
|
297 |
+
|
298 |
+
out = self.renderer.render(cur_cam, self.gaussain_scale_factor)
|
299 |
+
|
300 |
+
buffer_image = out[self.mode] # [3, H, W]
|
301 |
+
|
302 |
+
if self.mode in ['depth', 'alpha']:
|
303 |
+
buffer_image = buffer_image.repeat(3, 1, 1)
|
304 |
+
if self.mode == 'depth':
|
305 |
+
buffer_image = (buffer_image - buffer_image.min()) / (buffer_image.max() - buffer_image.min() + 1e-20)
|
306 |
+
|
307 |
+
buffer_image = F.interpolate(
|
308 |
+
buffer_image.unsqueeze(0),
|
309 |
+
size=(self.H, self.W),
|
310 |
+
mode="bilinear",
|
311 |
+
align_corners=False,
|
312 |
+
).squeeze(0)
|
313 |
+
|
314 |
+
self.buffer_image = (
|
315 |
+
buffer_image.permute(1, 2, 0)
|
316 |
+
.contiguous()
|
317 |
+
.clamp(0, 1)
|
318 |
+
.contiguous()
|
319 |
+
.detach()
|
320 |
+
.cpu()
|
321 |
+
.numpy()
|
322 |
+
)
|
323 |
+
|
324 |
+
# display input_image
|
325 |
+
if self.overlay_input_img and self.input_img is not None:
|
326 |
+
self.buffer_image = (
|
327 |
+
self.buffer_image * (1 - self.overlay_input_img_ratio)
|
328 |
+
+ self.input_img * self.overlay_input_img_ratio
|
329 |
+
)
|
330 |
+
|
331 |
+
self.need_update = False
|
332 |
+
|
333 |
+
ender.record()
|
334 |
+
torch.cuda.synchronize()
|
335 |
+
t = starter.elapsed_time(ender)
|
336 |
+
|
337 |
+
if self.gui:
|
338 |
+
dpg.set_value("_log_infer_time", f"{t:.4f}ms ({int(1000/t)} FPS)")
|
339 |
+
dpg.set_value(
|
340 |
+
"_texture", self.buffer_image
|
341 |
+
) # buffer must be contiguous, else seg fault!
|
342 |
+
|
343 |
+
|
344 |
+
def load_input(self, file):
|
345 |
+
# load image
|
346 |
+
print(f'[INFO] load image from {file}...')
|
347 |
+
img = cv2.imread(file, cv2.IMREAD_UNCHANGED)
|
348 |
+
if img.shape[-1] == 3:
|
349 |
+
if self.bg_remover is None:
|
350 |
+
self.bg_remover = rembg.new_session()
|
351 |
+
img = rembg.remove(img, session=self.bg_remover)
|
352 |
+
|
353 |
+
img = cv2.resize(img, (self.W, self.H), interpolation=cv2.INTER_AREA)
|
354 |
+
img = img.astype(np.float32) / 255.0
|
355 |
+
|
356 |
+
self.input_mask = img[..., 3:]
|
357 |
+
# white bg
|
358 |
+
self.input_img = img[..., :3] * self.input_mask + (1 - self.input_mask)
|
359 |
+
# bgr to rgb
|
360 |
+
self.input_img = self.input_img[..., ::-1].copy()
|
361 |
+
|
362 |
+
# load prompt
|
363 |
+
file_prompt = file.replace("_rgba.png", "_caption.txt")
|
364 |
+
if os.path.exists(file_prompt):
|
365 |
+
print(f'[INFO] load prompt from {file_prompt}...')
|
366 |
+
with open(file_prompt, "r") as f:
|
367 |
+
self.prompt = f.read().strip()
|
368 |
+
|
369 |
+
@torch.no_grad()
|
370 |
+
def save_model(self, mode='geo', texture_size=1024):
|
371 |
+
os.makedirs(self.opt.outdir, exist_ok=True)
|
372 |
+
if mode == 'geo':
|
373 |
+
path = os.path.join(self.opt.outdir, self.opt.save_path + '_mesh.ply')
|
374 |
+
mesh = self.renderer.gaussians.extract_mesh(path, self.opt.density_thresh)
|
375 |
+
mesh.write_ply(path)
|
376 |
+
|
377 |
+
elif mode == 'geo+tex':
|
378 |
+
path = os.path.join(self.opt.outdir, self.opt.save_path + '_mesh.' + self.opt.mesh_format)
|
379 |
+
mesh = self.renderer.gaussians.extract_mesh(path, self.opt.density_thresh)
|
380 |
+
|
381 |
+
# perform texture extraction
|
382 |
+
print(f"[INFO] unwrap uv...")
|
383 |
+
h = w = texture_size
|
384 |
+
mesh.auto_uv()
|
385 |
+
mesh.auto_normal()
|
386 |
+
|
387 |
+
albedo = torch.zeros((h, w, 3), device=self.device, dtype=torch.float32)
|
388 |
+
cnt = torch.zeros((h, w, 1), device=self.device, dtype=torch.float32)
|
389 |
+
|
390 |
+
# self.prepare_train() # tmp fix for not loading 0123
|
391 |
+
# vers = [0]
|
392 |
+
# hors = [0]
|
393 |
+
vers = [0] * 8 + [-45] * 8 + [45] * 8 + [-89.9, 89.9]
|
394 |
+
hors = [0, 45, -45, 90, -90, 135, -135, 180] * 3 + [0, 0]
|
395 |
+
|
396 |
+
render_resolution = 512
|
397 |
+
|
398 |
+
import nvdiffrast.torch as dr
|
399 |
+
|
400 |
+
if not self.opt.force_cuda_rast and (not self.opt.gui or os.name == 'nt'):
|
401 |
+
glctx = dr.RasterizeGLContext()
|
402 |
+
else:
|
403 |
+
glctx = dr.RasterizeCudaContext()
|
404 |
+
|
405 |
+
for ver, hor in zip(vers, hors):
|
406 |
+
# render image
|
407 |
+
pose = orbit_camera(ver, hor, self.cam.radius)
|
408 |
+
|
409 |
+
cur_cam = MiniCam(
|
410 |
+
pose,
|
411 |
+
render_resolution,
|
412 |
+
render_resolution,
|
413 |
+
self.cam.fovy,
|
414 |
+
self.cam.fovx,
|
415 |
+
self.cam.near,
|
416 |
+
self.cam.far,
|
417 |
+
)
|
418 |
+
|
419 |
+
cur_out = self.renderer.render(cur_cam)
|
420 |
+
|
421 |
+
rgbs = cur_out["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1]
|
422 |
+
|
423 |
+
# enhance texture quality with zero123 [not working well]
|
424 |
+
# if self.opt.guidance_model == 'zero123':
|
425 |
+
# rgbs = self.guidance.refine(rgbs, [ver], [hor], [0])
|
426 |
+
# import kiui
|
427 |
+
# kiui.vis.plot_image(rgbs)
|
428 |
+
|
429 |
+
# get coordinate in texture image
|
430 |
+
pose = torch.from_numpy(pose.astype(np.float32)).to(self.device)
|
431 |
+
proj = torch.from_numpy(self.cam.perspective.astype(np.float32)).to(self.device)
|
432 |
+
|
433 |
+
v_cam = torch.matmul(F.pad(mesh.v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0)
|
434 |
+
v_clip = v_cam @ proj.T
|
435 |
+
rast, rast_db = dr.rasterize(glctx, v_clip, mesh.f, (render_resolution, render_resolution))
|
436 |
+
|
437 |
+
depth, _ = dr.interpolate(-v_cam[..., [2]], rast, mesh.f) # [1, H, W, 1]
|
438 |
+
depth = depth.squeeze(0) # [H, W, 1]
|
439 |
+
|
440 |
+
alpha = (rast[0, ..., 3:] > 0).float()
|
441 |
+
|
442 |
+
uvs, _ = dr.interpolate(mesh.vt.unsqueeze(0), rast, mesh.ft) # [1, 512, 512, 2] in [0, 1]
|
443 |
+
|
444 |
+
# use normal to produce a back-project mask
|
445 |
+
normal, _ = dr.interpolate(mesh.vn.unsqueeze(0).contiguous(), rast, mesh.fn)
|
446 |
+
normal = safe_normalize(normal[0])
|
447 |
+
|
448 |
+
# rotated normal (where [0, 0, 1] always faces camera)
|
449 |
+
rot_normal = normal @ pose[:3, :3]
|
450 |
+
viewcos = rot_normal[..., [2]]
|
451 |
+
|
452 |
+
mask = (alpha > 0) & (viewcos > 0.5) # [H, W, 1]
|
453 |
+
mask = mask.view(-1)
|
454 |
+
|
455 |
+
uvs = uvs.view(-1, 2).clamp(0, 1)[mask]
|
456 |
+
rgbs = rgbs.view(3, -1).permute(1, 0)[mask].contiguous()
|
457 |
+
|
458 |
+
# update texture image
|
459 |
+
cur_albedo, cur_cnt = mipmap_linear_grid_put_2d(
|
460 |
+
h, w,
|
461 |
+
uvs[..., [1, 0]] * 2 - 1,
|
462 |
+
rgbs,
|
463 |
+
min_resolution=256,
|
464 |
+
return_count=True,
|
465 |
+
)
|
466 |
+
|
467 |
+
# albedo += cur_albedo
|
468 |
+
# cnt += cur_cnt
|
469 |
+
mask = cnt.squeeze(-1) < 0.1
|
470 |
+
albedo[mask] += cur_albedo[mask]
|
471 |
+
cnt[mask] += cur_cnt[mask]
|
472 |
+
|
473 |
+
mask = cnt.squeeze(-1) > 0
|
474 |
+
albedo[mask] = albedo[mask] / cnt[mask].repeat(1, 3)
|
475 |
+
|
476 |
+
mask = mask.view(h, w)
|
477 |
+
|
478 |
+
albedo = albedo.detach().cpu().numpy()
|
479 |
+
mask = mask.detach().cpu().numpy()
|
480 |
+
|
481 |
+
# dilate texture
|
482 |
+
from sklearn.neighbors import NearestNeighbors
|
483 |
+
from scipy.ndimage import binary_dilation, binary_erosion
|
484 |
+
|
485 |
+
inpaint_region = binary_dilation(mask, iterations=32)
|
486 |
+
inpaint_region[mask] = 0
|
487 |
+
|
488 |
+
search_region = mask.copy()
|
489 |
+
not_search_region = binary_erosion(search_region, iterations=3)
|
490 |
+
search_region[not_search_region] = 0
|
491 |
+
|
492 |
+
search_coords = np.stack(np.nonzero(search_region), axis=-1)
|
493 |
+
inpaint_coords = np.stack(np.nonzero(inpaint_region), axis=-1)
|
494 |
+
|
495 |
+
knn = NearestNeighbors(n_neighbors=1, algorithm="kd_tree").fit(
|
496 |
+
search_coords
|
497 |
+
)
|
498 |
+
_, indices = knn.kneighbors(inpaint_coords)
|
499 |
+
|
500 |
+
albedo[tuple(inpaint_coords.T)] = albedo[tuple(search_coords[indices[:, 0]].T)]
|
501 |
+
|
502 |
+
mesh.albedo = torch.from_numpy(albedo).to(self.device)
|
503 |
+
mesh.write(path)
|
504 |
+
|
505 |
+
else:
|
506 |
+
path = os.path.join(self.opt.outdir, self.opt.save_path + '_model.ply')
|
507 |
+
self.renderer.gaussians.save_ply(path)
|
508 |
+
|
509 |
+
print(f"[INFO] save model to {path}.")
|
510 |
+
|
511 |
+
def register_dpg(self):
|
512 |
+
### register texture
|
513 |
+
|
514 |
+
with dpg.texture_registry(show=False):
|
515 |
+
dpg.add_raw_texture(
|
516 |
+
self.W,
|
517 |
+
self.H,
|
518 |
+
self.buffer_image,
|
519 |
+
format=dpg.mvFormat_Float_rgb,
|
520 |
+
tag="_texture",
|
521 |
+
)
|
522 |
+
|
523 |
+
### register window
|
524 |
+
|
525 |
+
# the rendered image, as the primary window
|
526 |
+
with dpg.window(
|
527 |
+
tag="_primary_window",
|
528 |
+
width=self.W,
|
529 |
+
height=self.H,
|
530 |
+
pos=[0, 0],
|
531 |
+
no_move=True,
|
532 |
+
no_title_bar=True,
|
533 |
+
no_scrollbar=True,
|
534 |
+
):
|
535 |
+
# add the texture
|
536 |
+
dpg.add_image("_texture")
|
537 |
+
|
538 |
+
# dpg.set_primary_window("_primary_window", True)
|
539 |
+
|
540 |
+
# control window
|
541 |
+
with dpg.window(
|
542 |
+
label="Control",
|
543 |
+
tag="_control_window",
|
544 |
+
width=600,
|
545 |
+
height=self.H,
|
546 |
+
pos=[self.W, 0],
|
547 |
+
no_move=True,
|
548 |
+
no_title_bar=True,
|
549 |
+
):
|
550 |
+
# button theme
|
551 |
+
with dpg.theme() as theme_button:
|
552 |
+
with dpg.theme_component(dpg.mvButton):
|
553 |
+
dpg.add_theme_color(dpg.mvThemeCol_Button, (23, 3, 18))
|
554 |
+
dpg.add_theme_color(dpg.mvThemeCol_ButtonHovered, (51, 3, 47))
|
555 |
+
dpg.add_theme_color(dpg.mvThemeCol_ButtonActive, (83, 18, 83))
|
556 |
+
dpg.add_theme_style(dpg.mvStyleVar_FrameRounding, 5)
|
557 |
+
dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 3, 3)
|
558 |
+
|
559 |
+
# timer stuff
|
560 |
+
with dpg.group(horizontal=True):
|
561 |
+
dpg.add_text("Infer time: ")
|
562 |
+
dpg.add_text("no data", tag="_log_infer_time")
|
563 |
+
|
564 |
+
def callback_setattr(sender, app_data, user_data):
|
565 |
+
setattr(self, user_data, app_data)
|
566 |
+
|
567 |
+
# init stuff
|
568 |
+
with dpg.collapsing_header(label="Initialize", default_open=True):
|
569 |
+
|
570 |
+
# seed stuff
|
571 |
+
def callback_set_seed(sender, app_data):
|
572 |
+
self.seed = app_data
|
573 |
+
self.seed_everything()
|
574 |
+
|
575 |
+
dpg.add_input_text(
|
576 |
+
label="seed",
|
577 |
+
default_value=self.seed,
|
578 |
+
on_enter=True,
|
579 |
+
callback=callback_set_seed,
|
580 |
+
)
|
581 |
+
|
582 |
+
# input stuff
|
583 |
+
def callback_select_input(sender, app_data):
|
584 |
+
# only one item
|
585 |
+
for k, v in app_data["selections"].items():
|
586 |
+
dpg.set_value("_log_input", k)
|
587 |
+
self.load_input(v)
|
588 |
+
|
589 |
+
self.need_update = True
|
590 |
+
|
591 |
+
with dpg.file_dialog(
|
592 |
+
directory_selector=False,
|
593 |
+
show=False,
|
594 |
+
callback=callback_select_input,
|
595 |
+
file_count=1,
|
596 |
+
tag="file_dialog_tag",
|
597 |
+
width=700,
|
598 |
+
height=400,
|
599 |
+
):
|
600 |
+
dpg.add_file_extension("Images{.jpg,.jpeg,.png}")
|
601 |
+
|
602 |
+
with dpg.group(horizontal=True):
|
603 |
+
dpg.add_button(
|
604 |
+
label="input",
|
605 |
+
callback=lambda: dpg.show_item("file_dialog_tag"),
|
606 |
+
)
|
607 |
+
dpg.add_text("", tag="_log_input")
|
608 |
+
|
609 |
+
# overlay stuff
|
610 |
+
with dpg.group(horizontal=True):
|
611 |
+
|
612 |
+
def callback_toggle_overlay_input_img(sender, app_data):
|
613 |
+
self.overlay_input_img = not self.overlay_input_img
|
614 |
+
self.need_update = True
|
615 |
+
|
616 |
+
dpg.add_checkbox(
|
617 |
+
label="overlay image",
|
618 |
+
default_value=self.overlay_input_img,
|
619 |
+
callback=callback_toggle_overlay_input_img,
|
620 |
+
)
|
621 |
+
|
622 |
+
def callback_set_overlay_input_img_ratio(sender, app_data):
|
623 |
+
self.overlay_input_img_ratio = app_data
|
624 |
+
self.need_update = True
|
625 |
+
|
626 |
+
dpg.add_slider_float(
|
627 |
+
label="ratio",
|
628 |
+
min_value=0,
|
629 |
+
max_value=1,
|
630 |
+
format="%.1f",
|
631 |
+
default_value=self.overlay_input_img_ratio,
|
632 |
+
callback=callback_set_overlay_input_img_ratio,
|
633 |
+
)
|
634 |
+
|
635 |
+
# prompt stuff
|
636 |
+
|
637 |
+
dpg.add_input_text(
|
638 |
+
label="prompt",
|
639 |
+
default_value=self.prompt,
|
640 |
+
callback=callback_setattr,
|
641 |
+
user_data="prompt",
|
642 |
+
)
|
643 |
+
|
644 |
+
dpg.add_input_text(
|
645 |
+
label="negative",
|
646 |
+
default_value=self.negative_prompt,
|
647 |
+
callback=callback_setattr,
|
648 |
+
user_data="negative_prompt",
|
649 |
+
)
|
650 |
+
|
651 |
+
# save current model
|
652 |
+
with dpg.group(horizontal=True):
|
653 |
+
dpg.add_text("Save: ")
|
654 |
+
|
655 |
+
def callback_save(sender, app_data, user_data):
|
656 |
+
self.save_model(mode=user_data)
|
657 |
+
|
658 |
+
dpg.add_button(
|
659 |
+
label="model",
|
660 |
+
tag="_button_save_model",
|
661 |
+
callback=callback_save,
|
662 |
+
user_data='model',
|
663 |
+
)
|
664 |
+
dpg.bind_item_theme("_button_save_model", theme_button)
|
665 |
+
|
666 |
+
dpg.add_button(
|
667 |
+
label="geo",
|
668 |
+
tag="_button_save_mesh",
|
669 |
+
callback=callback_save,
|
670 |
+
user_data='geo',
|
671 |
+
)
|
672 |
+
dpg.bind_item_theme("_button_save_mesh", theme_button)
|
673 |
+
|
674 |
+
dpg.add_button(
|
675 |
+
label="geo+tex",
|
676 |
+
tag="_button_save_mesh_with_tex",
|
677 |
+
callback=callback_save,
|
678 |
+
user_data='geo+tex',
|
679 |
+
)
|
680 |
+
dpg.bind_item_theme("_button_save_mesh_with_tex", theme_button)
|
681 |
+
|
682 |
+
dpg.add_input_text(
|
683 |
+
label="",
|
684 |
+
default_value=self.opt.save_path,
|
685 |
+
callback=callback_setattr,
|
686 |
+
user_data="save_path",
|
687 |
+
)
|
688 |
+
|
689 |
+
# training stuff
|
690 |
+
with dpg.collapsing_header(label="Train", default_open=True):
|
691 |
+
# lr and train button
|
692 |
+
with dpg.group(horizontal=True):
|
693 |
+
dpg.add_text("Train: ")
|
694 |
+
|
695 |
+
def callback_train(sender, app_data):
|
696 |
+
if self.training:
|
697 |
+
self.training = False
|
698 |
+
dpg.configure_item("_button_train", label="start")
|
699 |
+
else:
|
700 |
+
self.prepare_train()
|
701 |
+
self.training = True
|
702 |
+
dpg.configure_item("_button_train", label="stop")
|
703 |
+
|
704 |
+
# dpg.add_button(
|
705 |
+
# label="init", tag="_button_init", callback=self.prepare_train
|
706 |
+
# )
|
707 |
+
# dpg.bind_item_theme("_button_init", theme_button)
|
708 |
+
|
709 |
+
dpg.add_button(
|
710 |
+
label="start", tag="_button_train", callback=callback_train
|
711 |
+
)
|
712 |
+
dpg.bind_item_theme("_button_train", theme_button)
|
713 |
+
|
714 |
+
with dpg.group(horizontal=True):
|
715 |
+
dpg.add_text("", tag="_log_train_time")
|
716 |
+
dpg.add_text("", tag="_log_train_log")
|
717 |
+
|
718 |
+
# rendering options
|
719 |
+
with dpg.collapsing_header(label="Rendering", default_open=True):
|
720 |
+
# mode combo
|
721 |
+
def callback_change_mode(sender, app_data):
|
722 |
+
self.mode = app_data
|
723 |
+
self.need_update = True
|
724 |
+
|
725 |
+
dpg.add_combo(
|
726 |
+
("image", "depth", "alpha"),
|
727 |
+
label="mode",
|
728 |
+
default_value=self.mode,
|
729 |
+
callback=callback_change_mode,
|
730 |
+
)
|
731 |
+
|
732 |
+
# fov slider
|
733 |
+
def callback_set_fovy(sender, app_data):
|
734 |
+
self.cam.fovy = np.deg2rad(app_data)
|
735 |
+
self.need_update = True
|
736 |
+
|
737 |
+
dpg.add_slider_int(
|
738 |
+
label="FoV (vertical)",
|
739 |
+
min_value=1,
|
740 |
+
max_value=120,
|
741 |
+
format="%d deg",
|
742 |
+
default_value=np.rad2deg(self.cam.fovy),
|
743 |
+
callback=callback_set_fovy,
|
744 |
+
)
|
745 |
+
|
746 |
+
def callback_set_gaussain_scale(sender, app_data):
|
747 |
+
self.gaussain_scale_factor = app_data
|
748 |
+
self.need_update = True
|
749 |
+
|
750 |
+
dpg.add_slider_float(
|
751 |
+
label="gaussain scale",
|
752 |
+
min_value=0,
|
753 |
+
max_value=1,
|
754 |
+
format="%.2f",
|
755 |
+
default_value=self.gaussain_scale_factor,
|
756 |
+
callback=callback_set_gaussain_scale,
|
757 |
+
)
|
758 |
+
|
759 |
+
### register camera handler
|
760 |
+
|
761 |
+
def callback_camera_drag_rotate_or_draw_mask(sender, app_data):
|
762 |
+
if not dpg.is_item_focused("_primary_window"):
|
763 |
+
return
|
764 |
+
|
765 |
+
dx = app_data[1]
|
766 |
+
dy = app_data[2]
|
767 |
+
|
768 |
+
self.cam.orbit(dx, dy)
|
769 |
+
self.need_update = True
|
770 |
+
|
771 |
+
def callback_camera_wheel_scale(sender, app_data):
|
772 |
+
if not dpg.is_item_focused("_primary_window"):
|
773 |
+
return
|
774 |
+
|
775 |
+
delta = app_data
|
776 |
+
|
777 |
+
self.cam.scale(delta)
|
778 |
+
self.need_update = True
|
779 |
+
|
780 |
+
def callback_camera_drag_pan(sender, app_data):
|
781 |
+
if not dpg.is_item_focused("_primary_window"):
|
782 |
+
return
|
783 |
+
|
784 |
+
dx = app_data[1]
|
785 |
+
dy = app_data[2]
|
786 |
+
|
787 |
+
self.cam.pan(dx, dy)
|
788 |
+
self.need_update = True
|
789 |
+
|
790 |
+
def callback_set_mouse_loc(sender, app_data):
|
791 |
+
if not dpg.is_item_focused("_primary_window"):
|
792 |
+
return
|
793 |
+
|
794 |
+
# just the pixel coordinate in image
|
795 |
+
self.mouse_loc = np.array(app_data)
|
796 |
+
|
797 |
+
with dpg.handler_registry():
|
798 |
+
# for camera moving
|
799 |
+
dpg.add_mouse_drag_handler(
|
800 |
+
button=dpg.mvMouseButton_Left,
|
801 |
+
callback=callback_camera_drag_rotate_or_draw_mask,
|
802 |
+
)
|
803 |
+
dpg.add_mouse_wheel_handler(callback=callback_camera_wheel_scale)
|
804 |
+
dpg.add_mouse_drag_handler(
|
805 |
+
button=dpg.mvMouseButton_Middle, callback=callback_camera_drag_pan
|
806 |
+
)
|
807 |
+
|
808 |
+
dpg.create_viewport(
|
809 |
+
title="Gaussian3D",
|
810 |
+
width=self.W + 600,
|
811 |
+
height=self.H + (45 if os.name == "nt" else 0),
|
812 |
+
resizable=False,
|
813 |
+
)
|
814 |
+
|
815 |
+
### global theme
|
816 |
+
with dpg.theme() as theme_no_padding:
|
817 |
+
with dpg.theme_component(dpg.mvAll):
|
818 |
+
# set all padding to 0 to avoid scroll bar
|
819 |
+
dpg.add_theme_style(
|
820 |
+
dpg.mvStyleVar_WindowPadding, 0, 0, category=dpg.mvThemeCat_Core
|
821 |
+
)
|
822 |
+
dpg.add_theme_style(
|
823 |
+
dpg.mvStyleVar_FramePadding, 0, 0, category=dpg.mvThemeCat_Core
|
824 |
+
)
|
825 |
+
dpg.add_theme_style(
|
826 |
+
dpg.mvStyleVar_CellPadding, 0, 0, category=dpg.mvThemeCat_Core
|
827 |
+
)
|
828 |
+
|
829 |
+
dpg.bind_item_theme("_primary_window", theme_no_padding)
|
830 |
+
|
831 |
+
dpg.setup_dearpygui()
|
832 |
+
|
833 |
+
### register a larger font
|
834 |
+
# get it from: https://github.com/lxgw/LxgwWenKai/releases/download/v1.300/LXGWWenKai-Regular.ttf
|
835 |
+
if os.path.exists("LXGWWenKai-Regular.ttf"):
|
836 |
+
with dpg.font_registry():
|
837 |
+
with dpg.font("LXGWWenKai-Regular.ttf", 18) as default_font:
|
838 |
+
dpg.bind_font(default_font)
|
839 |
+
|
840 |
+
# dpg.show_metrics()
|
841 |
+
|
842 |
+
dpg.show_viewport()
|
843 |
+
|
844 |
+
def render(self):
|
845 |
+
assert self.gui
|
846 |
+
while dpg.is_dearpygui_running():
|
847 |
+
# update texture every frame
|
848 |
+
if self.training:
|
849 |
+
self.train_step()
|
850 |
+
self.test_step()
|
851 |
+
dpg.render_dearpygui_frame()
|
852 |
+
|
853 |
+
# no gui mode
|
854 |
+
def train(self, iters=500):
|
855 |
+
if iters > 0:
|
856 |
+
self.prepare_train()
|
857 |
+
for i in tqdm.trange(iters):
|
858 |
+
self.train_step()
|
859 |
+
# do a last prune
|
860 |
+
self.renderer.gaussians.prune(min_opacity=0.01, extent=1, max_screen_size=1)
|
861 |
+
# save
|
862 |
+
self.save_model(mode='model')
|
863 |
+
self.save_model(mode='geo+tex')
|
864 |
+
|
865 |
+
|
866 |
+
if __name__ == "__main__":
|
867 |
+
import argparse
|
868 |
+
from omegaconf import OmegaConf
|
869 |
+
|
870 |
+
parser = argparse.ArgumentParser()
|
871 |
+
parser.add_argument("--config", required=True, help="path to the yaml config file")
|
872 |
+
args, extras = parser.parse_known_args()
|
873 |
+
|
874 |
+
# override default config from cli
|
875 |
+
opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
|
876 |
+
|
877 |
+
gui = GUI(opt)
|
878 |
+
|
879 |
+
if opt.gui:
|
880 |
+
gui.render()
|
881 |
+
else:
|
882 |
+
gui.train(opt.iters)
|
main2.py
ADDED
@@ -0,0 +1,671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
import tqdm
|
5 |
+
import numpy as np
|
6 |
+
# import dearpygui.dearpygui as dpg
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
import trimesh
|
12 |
+
import rembg
|
13 |
+
|
14 |
+
from cam_utils import orbit_camera, OrbitCamera
|
15 |
+
from mesh_renderer import Renderer
|
16 |
+
|
17 |
+
# from kiui.lpips import LPIPS
|
18 |
+
|
19 |
+
class GUI:
|
20 |
+
def __init__(self, opt):
|
21 |
+
self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
|
22 |
+
self.gui = opt.gui # enable gui
|
23 |
+
self.W = opt.W
|
24 |
+
self.H = opt.H
|
25 |
+
self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius, fovy=opt.fovy)
|
26 |
+
|
27 |
+
self.mode = "image"
|
28 |
+
self.seed = "random"
|
29 |
+
|
30 |
+
self.buffer_image = np.ones((self.W, self.H, 3), dtype=np.float32)
|
31 |
+
self.need_update = True # update buffer_image
|
32 |
+
|
33 |
+
# models
|
34 |
+
self.device = torch.device("cuda")
|
35 |
+
self.bg_remover = None
|
36 |
+
|
37 |
+
self.guidance_sd = None
|
38 |
+
self.guidance_zero123 = None
|
39 |
+
|
40 |
+
self.enable_sd = False
|
41 |
+
self.enable_zero123 = False
|
42 |
+
|
43 |
+
# renderer
|
44 |
+
self.renderer = Renderer(opt).to(self.device)
|
45 |
+
|
46 |
+
# input image
|
47 |
+
self.input_img = None
|
48 |
+
self.input_mask = None
|
49 |
+
self.input_img_torch = None
|
50 |
+
self.input_mask_torch = None
|
51 |
+
self.overlay_input_img = False
|
52 |
+
self.overlay_input_img_ratio = 0.5
|
53 |
+
|
54 |
+
# input text
|
55 |
+
self.prompt = ""
|
56 |
+
self.negative_prompt = ""
|
57 |
+
|
58 |
+
# training stuff
|
59 |
+
self.training = False
|
60 |
+
self.optimizer = None
|
61 |
+
self.step = 0
|
62 |
+
self.train_steps = 1 # steps per rendering loop
|
63 |
+
# self.lpips_loss = LPIPS(net='vgg').to(self.device)
|
64 |
+
|
65 |
+
# load input data from cmdline
|
66 |
+
if self.opt.input is not None:
|
67 |
+
self.load_input(self.opt.input)
|
68 |
+
|
69 |
+
# override prompt from cmdline
|
70 |
+
if self.opt.prompt is not None:
|
71 |
+
self.prompt = self.opt.prompt
|
72 |
+
|
73 |
+
if self.gui:
|
74 |
+
dpg.create_context()
|
75 |
+
self.register_dpg()
|
76 |
+
self.test_step()
|
77 |
+
|
78 |
+
def __del__(self):
|
79 |
+
if self.gui:
|
80 |
+
dpg.destroy_context()
|
81 |
+
|
82 |
+
def seed_everything(self):
|
83 |
+
try:
|
84 |
+
seed = int(self.seed)
|
85 |
+
except:
|
86 |
+
seed = np.random.randint(0, 1000000)
|
87 |
+
|
88 |
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
89 |
+
np.random.seed(seed)
|
90 |
+
torch.manual_seed(seed)
|
91 |
+
torch.cuda.manual_seed(seed)
|
92 |
+
torch.backends.cudnn.deterministic = True
|
93 |
+
torch.backends.cudnn.benchmark = True
|
94 |
+
|
95 |
+
self.last_seed = seed
|
96 |
+
|
97 |
+
def prepare_train(self):
|
98 |
+
|
99 |
+
self.step = 0
|
100 |
+
|
101 |
+
# setup training
|
102 |
+
self.optimizer = torch.optim.Adam(self.renderer.get_params())
|
103 |
+
|
104 |
+
# default camera
|
105 |
+
pose = orbit_camera(self.opt.elevation, 0, self.opt.radius)
|
106 |
+
self.fixed_cam = (pose, self.cam.perspective)
|
107 |
+
|
108 |
+
|
109 |
+
self.enable_sd = self.opt.lambda_sd > 0 and self.prompt != ""
|
110 |
+
self.enable_zero123 = self.opt.lambda_zero123 > 0 and self.input_img is not None
|
111 |
+
|
112 |
+
# lazy load guidance model
|
113 |
+
if self.guidance_sd is None and self.enable_sd:
|
114 |
+
print(f"[INFO] loading SD...")
|
115 |
+
from guidance.sd_utils import StableDiffusion
|
116 |
+
self.guidance_sd = StableDiffusion(self.device)
|
117 |
+
print(f"[INFO] loaded SD!")
|
118 |
+
|
119 |
+
if self.guidance_zero123 is None and self.enable_zero123:
|
120 |
+
print(f"[INFO] loading zero123...")
|
121 |
+
from guidance.zero123_utils import Zero123
|
122 |
+
self.guidance_zero123 = Zero123(self.device)
|
123 |
+
print(f"[INFO] loaded zero123!")
|
124 |
+
|
125 |
+
# input image
|
126 |
+
if self.input_img is not None:
|
127 |
+
self.input_img_torch = torch.from_numpy(self.input_img).permute(2, 0, 1).unsqueeze(0).to(self.device)
|
128 |
+
self.input_img_torch = F.interpolate(
|
129 |
+
self.input_img_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False
|
130 |
+
)
|
131 |
+
|
132 |
+
self.input_mask_torch = torch.from_numpy(self.input_mask).permute(2, 0, 1).unsqueeze(0).to(self.device)
|
133 |
+
self.input_mask_torch = F.interpolate(
|
134 |
+
self.input_mask_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False
|
135 |
+
)
|
136 |
+
self.input_img_torch_channel_last = self.input_img_torch[0].permute(1,2,0).contiguous()
|
137 |
+
|
138 |
+
# prepare embeddings
|
139 |
+
with torch.no_grad():
|
140 |
+
|
141 |
+
if self.enable_sd:
|
142 |
+
self.guidance_sd.get_text_embeds([self.prompt], [self.negative_prompt])
|
143 |
+
|
144 |
+
if self.enable_zero123:
|
145 |
+
self.guidance_zero123.get_img_embeds(self.input_img_torch)
|
146 |
+
|
147 |
+
def train_step(self):
|
148 |
+
starter = torch.cuda.Event(enable_timing=True)
|
149 |
+
ender = torch.cuda.Event(enable_timing=True)
|
150 |
+
starter.record()
|
151 |
+
|
152 |
+
|
153 |
+
for _ in range(self.train_steps):
|
154 |
+
|
155 |
+
self.step += 1
|
156 |
+
step_ratio = min(1, self.step / self.opt.iters_refine)
|
157 |
+
|
158 |
+
loss = 0
|
159 |
+
|
160 |
+
### known view
|
161 |
+
if self.input_img_torch is not None:
|
162 |
+
|
163 |
+
ssaa = min(2.0, max(0.125, 2 * np.random.random()))
|
164 |
+
out = self.renderer.render(*self.fixed_cam, self.opt.ref_size, self.opt.ref_size, ssaa=ssaa)
|
165 |
+
|
166 |
+
# rgb loss
|
167 |
+
image = out["image"] # [H, W, 3] in [0, 1]
|
168 |
+
valid_mask = ((out["alpha"] > 0) & (out["viewcos"] > 0.5)).detach()
|
169 |
+
loss = loss + F.mse_loss(image * valid_mask, self.input_img_torch_channel_last * valid_mask)
|
170 |
+
|
171 |
+
### novel view (manual batch)
|
172 |
+
render_resolution = 512
|
173 |
+
images = []
|
174 |
+
vers, hors, radii = [], [], []
|
175 |
+
# avoid too large elevation (> 80 or < -80), and make sure it always cover [-30, 30]
|
176 |
+
min_ver = max(min(-30, -30 - self.opt.elevation), -80 - self.opt.elevation)
|
177 |
+
max_ver = min(max(30, 30 - self.opt.elevation), 80 - self.opt.elevation)
|
178 |
+
for _ in range(self.opt.batch_size):
|
179 |
+
|
180 |
+
# render random view
|
181 |
+
ver = np.random.randint(min_ver, max_ver)
|
182 |
+
hor = np.random.randint(-180, 180)
|
183 |
+
radius = 0
|
184 |
+
|
185 |
+
vers.append(ver)
|
186 |
+
hors.append(hor)
|
187 |
+
radii.append(radius)
|
188 |
+
|
189 |
+
pose = orbit_camera(self.opt.elevation + ver, hor, self.opt.radius + radius)
|
190 |
+
|
191 |
+
# random render resolution
|
192 |
+
ssaa = min(2.0, max(0.125, 2 * np.random.random()))
|
193 |
+
out = self.renderer.render(pose, self.cam.perspective, render_resolution, render_resolution, ssaa=ssaa)
|
194 |
+
|
195 |
+
image = out["image"] # [H, W, 3] in [0, 1]
|
196 |
+
image = image.permute(2,0,1).contiguous().unsqueeze(0) # [1, 3, H, W] in [0, 1]
|
197 |
+
|
198 |
+
images.append(image)
|
199 |
+
|
200 |
+
images = torch.cat(images, dim=0)
|
201 |
+
|
202 |
+
# import kiui
|
203 |
+
# kiui.lo(hor, ver)
|
204 |
+
# kiui.vis.plot_image(image)
|
205 |
+
|
206 |
+
# guidance loss
|
207 |
+
if self.enable_sd:
|
208 |
+
|
209 |
+
# loss = loss + self.opt.lambda_sd * self.guidance_sd.train_step(images, step_ratio)
|
210 |
+
refined_images = self.guidance_sd.refine(images, strength=0.6).float()
|
211 |
+
refined_images = F.interpolate(refined_images, (render_resolution, render_resolution), mode="bilinear", align_corners=False)
|
212 |
+
loss = loss + self.opt.lambda_sd * F.mse_loss(images, refined_images)
|
213 |
+
|
214 |
+
if self.enable_zero123:
|
215 |
+
# loss = loss + self.opt.lambda_zero123 * self.guidance_zero123.train_step(images, vers, hors, radii, step_ratio)
|
216 |
+
refined_images = self.guidance_zero123.refine(images, vers, hors, radii, strength=0.6).float()
|
217 |
+
refined_images = F.interpolate(refined_images, (render_resolution, render_resolution), mode="bilinear", align_corners=False)
|
218 |
+
loss = loss + self.opt.lambda_zero123 * F.mse_loss(images, refined_images)
|
219 |
+
# loss = loss + self.opt.lambda_zero123 * self.lpips_loss(images, refined_images)
|
220 |
+
|
221 |
+
# optimize step
|
222 |
+
loss.backward()
|
223 |
+
self.optimizer.step()
|
224 |
+
self.optimizer.zero_grad()
|
225 |
+
|
226 |
+
ender.record()
|
227 |
+
torch.cuda.synchronize()
|
228 |
+
t = starter.elapsed_time(ender)
|
229 |
+
|
230 |
+
self.need_update = True
|
231 |
+
|
232 |
+
if self.gui:
|
233 |
+
dpg.set_value("_log_train_time", f"{t:.4f}ms")
|
234 |
+
dpg.set_value(
|
235 |
+
"_log_train_log",
|
236 |
+
f"step = {self.step: 5d} (+{self.train_steps: 2d}) loss = {loss.item():.4f}",
|
237 |
+
)
|
238 |
+
|
239 |
+
# dynamic train steps (no need for now)
|
240 |
+
# max allowed train time per-frame is 500 ms
|
241 |
+
# full_t = t / self.train_steps * 16
|
242 |
+
# train_steps = min(16, max(4, int(16 * 500 / full_t)))
|
243 |
+
# if train_steps > self.train_steps * 1.2 or train_steps < self.train_steps * 0.8:
|
244 |
+
# self.train_steps = train_steps
|
245 |
+
|
246 |
+
@torch.no_grad()
|
247 |
+
def test_step(self):
|
248 |
+
# ignore if no need to update
|
249 |
+
if not self.need_update:
|
250 |
+
return
|
251 |
+
|
252 |
+
starter = torch.cuda.Event(enable_timing=True)
|
253 |
+
ender = torch.cuda.Event(enable_timing=True)
|
254 |
+
starter.record()
|
255 |
+
|
256 |
+
# should update image
|
257 |
+
if self.need_update:
|
258 |
+
# render image
|
259 |
+
|
260 |
+
out = self.renderer.render(self.cam.pose, self.cam.perspective, self.H, self.W)
|
261 |
+
|
262 |
+
buffer_image = out[self.mode] # [H, W, 3]
|
263 |
+
|
264 |
+
if self.mode in ['depth', 'alpha']:
|
265 |
+
buffer_image = buffer_image.repeat(1, 1, 3)
|
266 |
+
if self.mode == 'depth':
|
267 |
+
buffer_image = (buffer_image - buffer_image.min()) / (buffer_image.max() - buffer_image.min() + 1e-20)
|
268 |
+
|
269 |
+
self.buffer_image = buffer_image.contiguous().clamp(0, 1).detach().cpu().numpy()
|
270 |
+
|
271 |
+
# display input_image
|
272 |
+
if self.overlay_input_img and self.input_img is not None:
|
273 |
+
self.buffer_image = (
|
274 |
+
self.buffer_image * (1 - self.overlay_input_img_ratio)
|
275 |
+
+ self.input_img * self.overlay_input_img_ratio
|
276 |
+
)
|
277 |
+
|
278 |
+
self.need_update = False
|
279 |
+
|
280 |
+
ender.record()
|
281 |
+
torch.cuda.synchronize()
|
282 |
+
t = starter.elapsed_time(ender)
|
283 |
+
|
284 |
+
if self.gui:
|
285 |
+
dpg.set_value("_log_infer_time", f"{t:.4f}ms ({int(1000/t)} FPS)")
|
286 |
+
dpg.set_value(
|
287 |
+
"_texture", self.buffer_image
|
288 |
+
) # buffer must be contiguous, else seg fault!
|
289 |
+
|
290 |
+
|
291 |
+
def load_input(self, file):
|
292 |
+
# load image
|
293 |
+
print(f'[INFO] load image from {file}...')
|
294 |
+
img = cv2.imread(file, cv2.IMREAD_UNCHANGED)
|
295 |
+
if img.shape[-1] == 3:
|
296 |
+
if self.bg_remover is None:
|
297 |
+
self.bg_remover = rembg.new_session()
|
298 |
+
img = rembg.remove(img, session=self.bg_remover)
|
299 |
+
|
300 |
+
img = cv2.resize(
|
301 |
+
img, (self.W, self.H), interpolation=cv2.INTER_AREA
|
302 |
+
)
|
303 |
+
img = img.astype(np.float32) / 255.0
|
304 |
+
|
305 |
+
self.input_mask = img[..., 3:]
|
306 |
+
# white bg
|
307 |
+
self.input_img = img[..., :3] * self.input_mask + (
|
308 |
+
1 - self.input_mask
|
309 |
+
)
|
310 |
+
# bgr to rgb
|
311 |
+
self.input_img = self.input_img[..., ::-1].copy()
|
312 |
+
|
313 |
+
# load prompt
|
314 |
+
file_prompt = file.replace("_rgba.png", "_caption.txt")
|
315 |
+
if os.path.exists(file_prompt):
|
316 |
+
print(f'[INFO] load prompt from {file_prompt}...')
|
317 |
+
with open(file_prompt, "r") as f:
|
318 |
+
self.prompt = f.read().strip()
|
319 |
+
|
320 |
+
def save_model(self):
|
321 |
+
os.makedirs(self.opt.outdir, exist_ok=True)
|
322 |
+
|
323 |
+
path = os.path.join(self.opt.outdir, self.opt.save_path + '.' + self.opt.mesh_format)
|
324 |
+
self.renderer.export_mesh(path)
|
325 |
+
|
326 |
+
print(f"[INFO] save model to {path}.")
|
327 |
+
|
328 |
+
def register_dpg(self):
|
329 |
+
### register texture
|
330 |
+
|
331 |
+
with dpg.texture_registry(show=False):
|
332 |
+
dpg.add_raw_texture(
|
333 |
+
self.W,
|
334 |
+
self.H,
|
335 |
+
self.buffer_image,
|
336 |
+
format=dpg.mvFormat_Float_rgb,
|
337 |
+
tag="_texture",
|
338 |
+
)
|
339 |
+
|
340 |
+
### register window
|
341 |
+
|
342 |
+
# the rendered image, as the primary window
|
343 |
+
with dpg.window(
|
344 |
+
tag="_primary_window",
|
345 |
+
width=self.W,
|
346 |
+
height=self.H,
|
347 |
+
pos=[0, 0],
|
348 |
+
no_move=True,
|
349 |
+
no_title_bar=True,
|
350 |
+
no_scrollbar=True,
|
351 |
+
):
|
352 |
+
# add the texture
|
353 |
+
dpg.add_image("_texture")
|
354 |
+
|
355 |
+
# dpg.set_primary_window("_primary_window", True)
|
356 |
+
|
357 |
+
# control window
|
358 |
+
with dpg.window(
|
359 |
+
label="Control",
|
360 |
+
tag="_control_window",
|
361 |
+
width=600,
|
362 |
+
height=self.H,
|
363 |
+
pos=[self.W, 0],
|
364 |
+
no_move=True,
|
365 |
+
no_title_bar=True,
|
366 |
+
):
|
367 |
+
# button theme
|
368 |
+
with dpg.theme() as theme_button:
|
369 |
+
with dpg.theme_component(dpg.mvButton):
|
370 |
+
dpg.add_theme_color(dpg.mvThemeCol_Button, (23, 3, 18))
|
371 |
+
dpg.add_theme_color(dpg.mvThemeCol_ButtonHovered, (51, 3, 47))
|
372 |
+
dpg.add_theme_color(dpg.mvThemeCol_ButtonActive, (83, 18, 83))
|
373 |
+
dpg.add_theme_style(dpg.mvStyleVar_FrameRounding, 5)
|
374 |
+
dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 3, 3)
|
375 |
+
|
376 |
+
# timer stuff
|
377 |
+
with dpg.group(horizontal=True):
|
378 |
+
dpg.add_text("Infer time: ")
|
379 |
+
dpg.add_text("no data", tag="_log_infer_time")
|
380 |
+
|
381 |
+
def callback_setattr(sender, app_data, user_data):
|
382 |
+
setattr(self, user_data, app_data)
|
383 |
+
|
384 |
+
# init stuff
|
385 |
+
with dpg.collapsing_header(label="Initialize", default_open=True):
|
386 |
+
|
387 |
+
# seed stuff
|
388 |
+
def callback_set_seed(sender, app_data):
|
389 |
+
self.seed = app_data
|
390 |
+
self.seed_everything()
|
391 |
+
|
392 |
+
dpg.add_input_text(
|
393 |
+
label="seed",
|
394 |
+
default_value=self.seed,
|
395 |
+
on_enter=True,
|
396 |
+
callback=callback_set_seed,
|
397 |
+
)
|
398 |
+
|
399 |
+
# input stuff
|
400 |
+
def callback_select_input(sender, app_data):
|
401 |
+
# only one item
|
402 |
+
for k, v in app_data["selections"].items():
|
403 |
+
dpg.set_value("_log_input", k)
|
404 |
+
self.load_input(v)
|
405 |
+
|
406 |
+
self.need_update = True
|
407 |
+
|
408 |
+
with dpg.file_dialog(
|
409 |
+
directory_selector=False,
|
410 |
+
show=False,
|
411 |
+
callback=callback_select_input,
|
412 |
+
file_count=1,
|
413 |
+
tag="file_dialog_tag",
|
414 |
+
width=700,
|
415 |
+
height=400,
|
416 |
+
):
|
417 |
+
dpg.add_file_extension("Images{.jpg,.jpeg,.png}")
|
418 |
+
|
419 |
+
with dpg.group(horizontal=True):
|
420 |
+
dpg.add_button(
|
421 |
+
label="input",
|
422 |
+
callback=lambda: dpg.show_item("file_dialog_tag"),
|
423 |
+
)
|
424 |
+
dpg.add_text("", tag="_log_input")
|
425 |
+
|
426 |
+
# overlay stuff
|
427 |
+
with dpg.group(horizontal=True):
|
428 |
+
|
429 |
+
def callback_toggle_overlay_input_img(sender, app_data):
|
430 |
+
self.overlay_input_img = not self.overlay_input_img
|
431 |
+
self.need_update = True
|
432 |
+
|
433 |
+
dpg.add_checkbox(
|
434 |
+
label="overlay image",
|
435 |
+
default_value=self.overlay_input_img,
|
436 |
+
callback=callback_toggle_overlay_input_img,
|
437 |
+
)
|
438 |
+
|
439 |
+
def callback_set_overlay_input_img_ratio(sender, app_data):
|
440 |
+
self.overlay_input_img_ratio = app_data
|
441 |
+
self.need_update = True
|
442 |
+
|
443 |
+
dpg.add_slider_float(
|
444 |
+
label="ratio",
|
445 |
+
min_value=0,
|
446 |
+
max_value=1,
|
447 |
+
format="%.1f",
|
448 |
+
default_value=self.overlay_input_img_ratio,
|
449 |
+
callback=callback_set_overlay_input_img_ratio,
|
450 |
+
)
|
451 |
+
|
452 |
+
# prompt stuff
|
453 |
+
|
454 |
+
dpg.add_input_text(
|
455 |
+
label="prompt",
|
456 |
+
default_value=self.prompt,
|
457 |
+
callback=callback_setattr,
|
458 |
+
user_data="prompt",
|
459 |
+
)
|
460 |
+
|
461 |
+
dpg.add_input_text(
|
462 |
+
label="negative",
|
463 |
+
default_value=self.negative_prompt,
|
464 |
+
callback=callback_setattr,
|
465 |
+
user_data="negative_prompt",
|
466 |
+
)
|
467 |
+
|
468 |
+
# save current model
|
469 |
+
with dpg.group(horizontal=True):
|
470 |
+
dpg.add_text("Save: ")
|
471 |
+
|
472 |
+
dpg.add_button(
|
473 |
+
label="model",
|
474 |
+
tag="_button_save_model",
|
475 |
+
callback=self.save_model,
|
476 |
+
)
|
477 |
+
dpg.bind_item_theme("_button_save_model", theme_button)
|
478 |
+
|
479 |
+
dpg.add_input_text(
|
480 |
+
label="",
|
481 |
+
default_value=self.opt.save_path,
|
482 |
+
callback=callback_setattr,
|
483 |
+
user_data="save_path",
|
484 |
+
)
|
485 |
+
|
486 |
+
# training stuff
|
487 |
+
with dpg.collapsing_header(label="Train", default_open=True):
|
488 |
+
# lr and train button
|
489 |
+
with dpg.group(horizontal=True):
|
490 |
+
dpg.add_text("Train: ")
|
491 |
+
|
492 |
+
def callback_train(sender, app_data):
|
493 |
+
if self.training:
|
494 |
+
self.training = False
|
495 |
+
dpg.configure_item("_button_train", label="start")
|
496 |
+
else:
|
497 |
+
self.prepare_train()
|
498 |
+
self.training = True
|
499 |
+
dpg.configure_item("_button_train", label="stop")
|
500 |
+
|
501 |
+
# dpg.add_button(
|
502 |
+
# label="init", tag="_button_init", callback=self.prepare_train
|
503 |
+
# )
|
504 |
+
# dpg.bind_item_theme("_button_init", theme_button)
|
505 |
+
|
506 |
+
dpg.add_button(
|
507 |
+
label="start", tag="_button_train", callback=callback_train
|
508 |
+
)
|
509 |
+
dpg.bind_item_theme("_button_train", theme_button)
|
510 |
+
|
511 |
+
with dpg.group(horizontal=True):
|
512 |
+
dpg.add_text("", tag="_log_train_time")
|
513 |
+
dpg.add_text("", tag="_log_train_log")
|
514 |
+
|
515 |
+
# rendering options
|
516 |
+
with dpg.collapsing_header(label="Rendering", default_open=True):
|
517 |
+
# mode combo
|
518 |
+
def callback_change_mode(sender, app_data):
|
519 |
+
self.mode = app_data
|
520 |
+
self.need_update = True
|
521 |
+
|
522 |
+
dpg.add_combo(
|
523 |
+
("image", "depth", "alpha", "normal"),
|
524 |
+
label="mode",
|
525 |
+
default_value=self.mode,
|
526 |
+
callback=callback_change_mode,
|
527 |
+
)
|
528 |
+
|
529 |
+
# fov slider
|
530 |
+
def callback_set_fovy(sender, app_data):
|
531 |
+
self.cam.fovy = np.deg2rad(app_data)
|
532 |
+
self.need_update = True
|
533 |
+
|
534 |
+
dpg.add_slider_int(
|
535 |
+
label="FoV (vertical)",
|
536 |
+
min_value=1,
|
537 |
+
max_value=120,
|
538 |
+
format="%d deg",
|
539 |
+
default_value=np.rad2deg(self.cam.fovy),
|
540 |
+
callback=callback_set_fovy,
|
541 |
+
)
|
542 |
+
|
543 |
+
### register camera handler
|
544 |
+
|
545 |
+
def callback_camera_drag_rotate_or_draw_mask(sender, app_data):
|
546 |
+
if not dpg.is_item_focused("_primary_window"):
|
547 |
+
return
|
548 |
+
|
549 |
+
dx = app_data[1]
|
550 |
+
dy = app_data[2]
|
551 |
+
|
552 |
+
self.cam.orbit(dx, dy)
|
553 |
+
self.need_update = True
|
554 |
+
|
555 |
+
def callback_camera_wheel_scale(sender, app_data):
|
556 |
+
if not dpg.is_item_focused("_primary_window"):
|
557 |
+
return
|
558 |
+
|
559 |
+
delta = app_data
|
560 |
+
|
561 |
+
self.cam.scale(delta)
|
562 |
+
self.need_update = True
|
563 |
+
|
564 |
+
def callback_camera_drag_pan(sender, app_data):
|
565 |
+
if not dpg.is_item_focused("_primary_window"):
|
566 |
+
return
|
567 |
+
|
568 |
+
dx = app_data[1]
|
569 |
+
dy = app_data[2]
|
570 |
+
|
571 |
+
self.cam.pan(dx, dy)
|
572 |
+
self.need_update = True
|
573 |
+
|
574 |
+
def callback_set_mouse_loc(sender, app_data):
|
575 |
+
if not dpg.is_item_focused("_primary_window"):
|
576 |
+
return
|
577 |
+
|
578 |
+
# just the pixel coordinate in image
|
579 |
+
self.mouse_loc = np.array(app_data)
|
580 |
+
|
581 |
+
with dpg.handler_registry():
|
582 |
+
# for camera moving
|
583 |
+
dpg.add_mouse_drag_handler(
|
584 |
+
button=dpg.mvMouseButton_Left,
|
585 |
+
callback=callback_camera_drag_rotate_or_draw_mask,
|
586 |
+
)
|
587 |
+
dpg.add_mouse_wheel_handler(callback=callback_camera_wheel_scale)
|
588 |
+
dpg.add_mouse_drag_handler(
|
589 |
+
button=dpg.mvMouseButton_Middle, callback=callback_camera_drag_pan
|
590 |
+
)
|
591 |
+
|
592 |
+
dpg.create_viewport(
|
593 |
+
title="Gaussian3D",
|
594 |
+
width=self.W + 600,
|
595 |
+
height=self.H + (45 if os.name == "nt" else 0),
|
596 |
+
resizable=False,
|
597 |
+
)
|
598 |
+
|
599 |
+
### global theme
|
600 |
+
with dpg.theme() as theme_no_padding:
|
601 |
+
with dpg.theme_component(dpg.mvAll):
|
602 |
+
# set all padding to 0 to avoid scroll bar
|
603 |
+
dpg.add_theme_style(
|
604 |
+
dpg.mvStyleVar_WindowPadding, 0, 0, category=dpg.mvThemeCat_Core
|
605 |
+
)
|
606 |
+
dpg.add_theme_style(
|
607 |
+
dpg.mvStyleVar_FramePadding, 0, 0, category=dpg.mvThemeCat_Core
|
608 |
+
)
|
609 |
+
dpg.add_theme_style(
|
610 |
+
dpg.mvStyleVar_CellPadding, 0, 0, category=dpg.mvThemeCat_Core
|
611 |
+
)
|
612 |
+
|
613 |
+
dpg.bind_item_theme("_primary_window", theme_no_padding)
|
614 |
+
|
615 |
+
dpg.setup_dearpygui()
|
616 |
+
|
617 |
+
### register a larger font
|
618 |
+
# get it from: https://github.com/lxgw/LxgwWenKai/releases/download/v1.300/LXGWWenKai-Regular.ttf
|
619 |
+
if os.path.exists("LXGWWenKai-Regular.ttf"):
|
620 |
+
with dpg.font_registry():
|
621 |
+
with dpg.font("LXGWWenKai-Regular.ttf", 18) as default_font:
|
622 |
+
dpg.bind_font(default_font)
|
623 |
+
|
624 |
+
# dpg.show_metrics()
|
625 |
+
|
626 |
+
dpg.show_viewport()
|
627 |
+
|
628 |
+
def render(self):
|
629 |
+
assert self.gui
|
630 |
+
while dpg.is_dearpygui_running():
|
631 |
+
# update texture every frame
|
632 |
+
if self.training:
|
633 |
+
self.train_step()
|
634 |
+
self.test_step()
|
635 |
+
dpg.render_dearpygui_frame()
|
636 |
+
|
637 |
+
# no gui mode
|
638 |
+
def train(self, iters=500):
|
639 |
+
if iters > 0:
|
640 |
+
self.prepare_train()
|
641 |
+
for i in tqdm.trange(iters):
|
642 |
+
self.train_step()
|
643 |
+
# save
|
644 |
+
self.save_model()
|
645 |
+
|
646 |
+
|
647 |
+
if __name__ == "__main__":
|
648 |
+
import argparse
|
649 |
+
from omegaconf import OmegaConf
|
650 |
+
|
651 |
+
parser = argparse.ArgumentParser()
|
652 |
+
parser.add_argument("--config", required=True, help="path to the yaml config file")
|
653 |
+
args, extras = parser.parse_known_args()
|
654 |
+
|
655 |
+
# override default config from cli
|
656 |
+
opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
|
657 |
+
|
658 |
+
# auto find mesh from stage 1
|
659 |
+
if opt.mesh is None:
|
660 |
+
default_path = os.path.join(opt.outdir, opt.save_path + '_mesh.' + opt.mesh_format)
|
661 |
+
if os.path.exists(default_path):
|
662 |
+
opt.mesh = default_path
|
663 |
+
else:
|
664 |
+
raise ValueError(f"Cannot find mesh from {default_path}, must specify --mesh explicitly!")
|
665 |
+
|
666 |
+
gui = GUI(opt)
|
667 |
+
|
668 |
+
if opt.gui:
|
669 |
+
gui.render()
|
670 |
+
else:
|
671 |
+
gui.train(opt.iters_refine)
|
mesh.py
ADDED
@@ -0,0 +1,622 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import trimesh
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
def dot(x, y):
|
8 |
+
return torch.sum(x * y, -1, keepdim=True)
|
9 |
+
|
10 |
+
|
11 |
+
def length(x, eps=1e-20):
|
12 |
+
return torch.sqrt(torch.clamp(dot(x, x), min=eps))
|
13 |
+
|
14 |
+
|
15 |
+
def safe_normalize(x, eps=1e-20):
|
16 |
+
return x / length(x, eps)
|
17 |
+
|
18 |
+
class Mesh:
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
v=None,
|
22 |
+
f=None,
|
23 |
+
vn=None,
|
24 |
+
fn=None,
|
25 |
+
vt=None,
|
26 |
+
ft=None,
|
27 |
+
albedo=None,
|
28 |
+
vc=None, # vertex color
|
29 |
+
device=None,
|
30 |
+
):
|
31 |
+
self.device = device
|
32 |
+
self.v = v
|
33 |
+
self.vn = vn
|
34 |
+
self.vt = vt
|
35 |
+
self.f = f
|
36 |
+
self.fn = fn
|
37 |
+
self.ft = ft
|
38 |
+
# only support a single albedo
|
39 |
+
self.albedo = albedo
|
40 |
+
# support vertex color is no albedo
|
41 |
+
self.vc = vc
|
42 |
+
|
43 |
+
self.ori_center = 0
|
44 |
+
self.ori_scale = 1
|
45 |
+
|
46 |
+
@classmethod
|
47 |
+
def load(cls, path=None, resize=True, renormal=True, retex=False, front_dir='+z', **kwargs):
|
48 |
+
# assume init with kwargs
|
49 |
+
if path is None:
|
50 |
+
mesh = cls(**kwargs)
|
51 |
+
# obj supports face uv
|
52 |
+
elif path.endswith(".obj"):
|
53 |
+
mesh = cls.load_obj(path, **kwargs)
|
54 |
+
# trimesh only supports vertex uv, but can load more formats
|
55 |
+
else:
|
56 |
+
mesh = cls.load_trimesh(path, **kwargs)
|
57 |
+
|
58 |
+
print(f"[Mesh loading] v: {mesh.v.shape}, f: {mesh.f.shape}")
|
59 |
+
# auto-normalize
|
60 |
+
if resize:
|
61 |
+
mesh.auto_size()
|
62 |
+
# auto-fix normal
|
63 |
+
if renormal or mesh.vn is None:
|
64 |
+
mesh.auto_normal()
|
65 |
+
print(f"[Mesh loading] vn: {mesh.vn.shape}, fn: {mesh.fn.shape}")
|
66 |
+
# auto-fix texcoords
|
67 |
+
if retex or (mesh.albedo is not None and mesh.vt is None):
|
68 |
+
mesh.auto_uv(cache_path=path)
|
69 |
+
print(f"[Mesh loading] vt: {mesh.vt.shape}, ft: {mesh.ft.shape}")
|
70 |
+
|
71 |
+
# rotate front dir to +z
|
72 |
+
if front_dir != "+z":
|
73 |
+
# axis switch
|
74 |
+
if "-z" in front_dir:
|
75 |
+
T = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, -1]], device=mesh.device, dtype=torch.float32)
|
76 |
+
elif "+x" in front_dir:
|
77 |
+
T = torch.tensor([[0, 0, 1], [0, 1, 0], [1, 0, 0]], device=mesh.device, dtype=torch.float32)
|
78 |
+
elif "-x" in front_dir:
|
79 |
+
T = torch.tensor([[0, 0, -1], [0, 1, 0], [1, 0, 0]], device=mesh.device, dtype=torch.float32)
|
80 |
+
elif "+y" in front_dir:
|
81 |
+
T = torch.tensor([[1, 0, 0], [0, 0, 1], [0, 1, 0]], device=mesh.device, dtype=torch.float32)
|
82 |
+
elif "-y" in front_dir:
|
83 |
+
T = torch.tensor([[1, 0, 0], [0, 0, -1], [0, 1, 0]], device=mesh.device, dtype=torch.float32)
|
84 |
+
else:
|
85 |
+
T = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32)
|
86 |
+
# rotation (how many 90 degrees)
|
87 |
+
if '1' in front_dir:
|
88 |
+
T @= torch.tensor([[0, -1, 0], [1, 0, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32)
|
89 |
+
elif '2' in front_dir:
|
90 |
+
T @= torch.tensor([[1, 0, 0], [0, -1, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32)
|
91 |
+
elif '3' in front_dir:
|
92 |
+
T @= torch.tensor([[0, 1, 0], [-1, 0, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32)
|
93 |
+
mesh.v @= T
|
94 |
+
mesh.vn @= T
|
95 |
+
|
96 |
+
return mesh
|
97 |
+
|
98 |
+
# load from obj file
|
99 |
+
@classmethod
|
100 |
+
def load_obj(cls, path, albedo_path=None, device=None):
|
101 |
+
assert os.path.splitext(path)[-1] == ".obj"
|
102 |
+
|
103 |
+
mesh = cls()
|
104 |
+
|
105 |
+
# device
|
106 |
+
if device is None:
|
107 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
108 |
+
|
109 |
+
mesh.device = device
|
110 |
+
|
111 |
+
# load obj
|
112 |
+
with open(path, "r") as f:
|
113 |
+
lines = f.readlines()
|
114 |
+
|
115 |
+
def parse_f_v(fv):
|
116 |
+
# pass in a vertex term of a face, return {v, vt, vn} (-1 if not provided)
|
117 |
+
# supported forms:
|
118 |
+
# f v1 v2 v3
|
119 |
+
# f v1/vt1 v2/vt2 v3/vt3
|
120 |
+
# f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3
|
121 |
+
# f v1//vn1 v2//vn2 v3//vn3
|
122 |
+
xs = [int(x) - 1 if x != "" else -1 for x in fv.split("/")]
|
123 |
+
xs.extend([-1] * (3 - len(xs)))
|
124 |
+
return xs[0], xs[1], xs[2]
|
125 |
+
|
126 |
+
# NOTE: we ignore usemtl, and assume the mesh ONLY uses one material (first in mtl)
|
127 |
+
vertices, texcoords, normals = [], [], []
|
128 |
+
faces, tfaces, nfaces = [], [], []
|
129 |
+
mtl_path = None
|
130 |
+
|
131 |
+
for line in lines:
|
132 |
+
split_line = line.split()
|
133 |
+
# empty line
|
134 |
+
if len(split_line) == 0:
|
135 |
+
continue
|
136 |
+
prefix = split_line[0].lower()
|
137 |
+
# mtllib
|
138 |
+
if prefix == "mtllib":
|
139 |
+
mtl_path = split_line[1]
|
140 |
+
# usemtl
|
141 |
+
elif prefix == "usemtl":
|
142 |
+
pass # ignored
|
143 |
+
# v/vn/vt
|
144 |
+
elif prefix == "v":
|
145 |
+
vertices.append([float(v) for v in split_line[1:]])
|
146 |
+
elif prefix == "vn":
|
147 |
+
normals.append([float(v) for v in split_line[1:]])
|
148 |
+
elif prefix == "vt":
|
149 |
+
val = [float(v) for v in split_line[1:]]
|
150 |
+
texcoords.append([val[0], 1.0 - val[1]])
|
151 |
+
elif prefix == "f":
|
152 |
+
vs = split_line[1:]
|
153 |
+
nv = len(vs)
|
154 |
+
v0, t0, n0 = parse_f_v(vs[0])
|
155 |
+
for i in range(nv - 2): # triangulate (assume vertices are ordered)
|
156 |
+
v1, t1, n1 = parse_f_v(vs[i + 1])
|
157 |
+
v2, t2, n2 = parse_f_v(vs[i + 2])
|
158 |
+
faces.append([v0, v1, v2])
|
159 |
+
tfaces.append([t0, t1, t2])
|
160 |
+
nfaces.append([n0, n1, n2])
|
161 |
+
|
162 |
+
mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device)
|
163 |
+
mesh.vt = (
|
164 |
+
torch.tensor(texcoords, dtype=torch.float32, device=device)
|
165 |
+
if len(texcoords) > 0
|
166 |
+
else None
|
167 |
+
)
|
168 |
+
mesh.vn = (
|
169 |
+
torch.tensor(normals, dtype=torch.float32, device=device)
|
170 |
+
if len(normals) > 0
|
171 |
+
else None
|
172 |
+
)
|
173 |
+
|
174 |
+
mesh.f = torch.tensor(faces, dtype=torch.int32, device=device)
|
175 |
+
mesh.ft = (
|
176 |
+
torch.tensor(tfaces, dtype=torch.int32, device=device)
|
177 |
+
if len(texcoords) > 0
|
178 |
+
else None
|
179 |
+
)
|
180 |
+
mesh.fn = (
|
181 |
+
torch.tensor(nfaces, dtype=torch.int32, device=device)
|
182 |
+
if len(normals) > 0
|
183 |
+
else None
|
184 |
+
)
|
185 |
+
|
186 |
+
# see if there is vertex color
|
187 |
+
use_vertex_color = False
|
188 |
+
if mesh.v.shape[1] == 6:
|
189 |
+
use_vertex_color = True
|
190 |
+
mesh.vc = mesh.v[:, 3:]
|
191 |
+
mesh.v = mesh.v[:, :3]
|
192 |
+
print(f"[load_obj] use vertex color: {mesh.vc.shape}")
|
193 |
+
|
194 |
+
# try to load texture image
|
195 |
+
if not use_vertex_color:
|
196 |
+
# try to retrieve mtl file
|
197 |
+
mtl_path_candidates = []
|
198 |
+
if mtl_path is not None:
|
199 |
+
mtl_path_candidates.append(mtl_path)
|
200 |
+
mtl_path_candidates.append(os.path.join(os.path.dirname(path), mtl_path))
|
201 |
+
mtl_path_candidates.append(path.replace(".obj", ".mtl"))
|
202 |
+
|
203 |
+
mtl_path = None
|
204 |
+
for candidate in mtl_path_candidates:
|
205 |
+
if os.path.exists(candidate):
|
206 |
+
mtl_path = candidate
|
207 |
+
break
|
208 |
+
|
209 |
+
# if albedo_path is not provided, try retrieve it from mtl
|
210 |
+
if mtl_path is not None and albedo_path is None:
|
211 |
+
with open(mtl_path, "r") as f:
|
212 |
+
lines = f.readlines()
|
213 |
+
for line in lines:
|
214 |
+
split_line = line.split()
|
215 |
+
# empty line
|
216 |
+
if len(split_line) == 0:
|
217 |
+
continue
|
218 |
+
prefix = split_line[0]
|
219 |
+
# NOTE: simply use the first map_Kd as albedo!
|
220 |
+
if "map_Kd" in prefix:
|
221 |
+
albedo_path = os.path.join(os.path.dirname(path), split_line[1])
|
222 |
+
print(f"[load_obj] use texture from: {albedo_path}")
|
223 |
+
break
|
224 |
+
|
225 |
+
# still not found albedo_path, or the path doesn't exist
|
226 |
+
if albedo_path is None or not os.path.exists(albedo_path):
|
227 |
+
# init an empty texture
|
228 |
+
print(f"[load_obj] init empty albedo!")
|
229 |
+
# albedo = np.random.rand(1024, 1024, 3).astype(np.float32)
|
230 |
+
albedo = np.ones((1024, 1024, 3), dtype=np.float32) * np.array([0.5, 0.5, 0.5]) # default color
|
231 |
+
else:
|
232 |
+
albedo = cv2.imread(albedo_path, cv2.IMREAD_UNCHANGED)
|
233 |
+
albedo = cv2.cvtColor(albedo, cv2.COLOR_BGR2RGB)
|
234 |
+
albedo = albedo.astype(np.float32) / 255
|
235 |
+
print(f"[load_obj] load texture: {albedo.shape}")
|
236 |
+
|
237 |
+
# import matplotlib.pyplot as plt
|
238 |
+
# plt.imshow(albedo)
|
239 |
+
# plt.show()
|
240 |
+
|
241 |
+
mesh.albedo = torch.tensor(albedo, dtype=torch.float32, device=device)
|
242 |
+
|
243 |
+
return mesh
|
244 |
+
|
245 |
+
@classmethod
|
246 |
+
def load_trimesh(cls, path, device=None):
|
247 |
+
mesh = cls()
|
248 |
+
|
249 |
+
# device
|
250 |
+
if device is None:
|
251 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
252 |
+
|
253 |
+
mesh.device = device
|
254 |
+
|
255 |
+
# use trimesh to load ply/glb, assume only has one single RootMesh...
|
256 |
+
_data = trimesh.load(path)
|
257 |
+
if isinstance(_data, trimesh.Scene):
|
258 |
+
if len(_data.geometry) == 1:
|
259 |
+
_mesh = list(_data.geometry.values())[0]
|
260 |
+
else:
|
261 |
+
# manual concat, will lose texture
|
262 |
+
_concat = []
|
263 |
+
for g in _data.geometry.values():
|
264 |
+
if isinstance(g, trimesh.Trimesh):
|
265 |
+
_concat.append(g)
|
266 |
+
_mesh = trimesh.util.concatenate(_concat)
|
267 |
+
else:
|
268 |
+
_mesh = _data
|
269 |
+
|
270 |
+
if _mesh.visual.kind == 'vertex':
|
271 |
+
vertex_colors = _mesh.visual.vertex_colors
|
272 |
+
vertex_colors = np.array(vertex_colors[..., :3]).astype(np.float32) / 255
|
273 |
+
mesh.vc = torch.tensor(vertex_colors, dtype=torch.float32, device=device)
|
274 |
+
print(f"[load_trimesh] use vertex color: {mesh.vc.shape}")
|
275 |
+
elif _mesh.visual.kind == 'texture':
|
276 |
+
_material = _mesh.visual.material
|
277 |
+
if isinstance(_material, trimesh.visual.material.PBRMaterial):
|
278 |
+
texture = np.array(_material.baseColorTexture).astype(np.float32) / 255
|
279 |
+
elif isinstance(_material, trimesh.visual.material.SimpleMaterial):
|
280 |
+
texture = np.array(_material.to_pbr().baseColorTexture).astype(np.float32) / 255
|
281 |
+
else:
|
282 |
+
raise NotImplementedError(f"material type {type(_material)} not supported!")
|
283 |
+
mesh.albedo = torch.tensor(texture, dtype=torch.float32, device=device)
|
284 |
+
print(f"[load_trimesh] load texture: {texture.shape}")
|
285 |
+
else:
|
286 |
+
texture = np.ones((1024, 1024, 3), dtype=np.float32) * np.array([0.5, 0.5, 0.5])
|
287 |
+
mesh.albedo = torch.tensor(texture, dtype=torch.float32, device=device)
|
288 |
+
print(f"[load_trimesh] failed to load texture.")
|
289 |
+
|
290 |
+
vertices = _mesh.vertices
|
291 |
+
|
292 |
+
try:
|
293 |
+
texcoords = _mesh.visual.uv
|
294 |
+
texcoords[:, 1] = 1 - texcoords[:, 1]
|
295 |
+
except Exception as e:
|
296 |
+
texcoords = None
|
297 |
+
|
298 |
+
try:
|
299 |
+
normals = _mesh.vertex_normals
|
300 |
+
except Exception as e:
|
301 |
+
normals = None
|
302 |
+
|
303 |
+
# trimesh only support vertex uv...
|
304 |
+
faces = tfaces = nfaces = _mesh.faces
|
305 |
+
|
306 |
+
mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device)
|
307 |
+
mesh.vt = (
|
308 |
+
torch.tensor(texcoords, dtype=torch.float32, device=device)
|
309 |
+
if texcoords is not None
|
310 |
+
else None
|
311 |
+
)
|
312 |
+
mesh.vn = (
|
313 |
+
torch.tensor(normals, dtype=torch.float32, device=device)
|
314 |
+
if normals is not None
|
315 |
+
else None
|
316 |
+
)
|
317 |
+
|
318 |
+
mesh.f = torch.tensor(faces, dtype=torch.int32, device=device)
|
319 |
+
mesh.ft = (
|
320 |
+
torch.tensor(tfaces, dtype=torch.int32, device=device)
|
321 |
+
if texcoords is not None
|
322 |
+
else None
|
323 |
+
)
|
324 |
+
mesh.fn = (
|
325 |
+
torch.tensor(nfaces, dtype=torch.int32, device=device)
|
326 |
+
if normals is not None
|
327 |
+
else None
|
328 |
+
)
|
329 |
+
|
330 |
+
return mesh
|
331 |
+
|
332 |
+
# aabb
|
333 |
+
def aabb(self):
|
334 |
+
return torch.min(self.v, dim=0).values, torch.max(self.v, dim=0).values
|
335 |
+
|
336 |
+
# unit size
|
337 |
+
@torch.no_grad()
|
338 |
+
def auto_size(self):
|
339 |
+
vmin, vmax = self.aabb()
|
340 |
+
self.ori_center = (vmax + vmin) / 2
|
341 |
+
self.ori_scale = 1.2 / torch.max(vmax - vmin).item()
|
342 |
+
self.v = (self.v - self.ori_center) * self.ori_scale
|
343 |
+
|
344 |
+
def auto_normal(self):
|
345 |
+
i0, i1, i2 = self.f[:, 0].long(), self.f[:, 1].long(), self.f[:, 2].long()
|
346 |
+
v0, v1, v2 = self.v[i0, :], self.v[i1, :], self.v[i2, :]
|
347 |
+
|
348 |
+
face_normals = torch.cross(v1 - v0, v2 - v0)
|
349 |
+
|
350 |
+
# Splat face normals to vertices
|
351 |
+
vn = torch.zeros_like(self.v)
|
352 |
+
vn.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
|
353 |
+
vn.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
|
354 |
+
vn.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)
|
355 |
+
|
356 |
+
# Normalize, replace zero (degenerated) normals with some default value
|
357 |
+
vn = torch.where(
|
358 |
+
dot(vn, vn) > 1e-20,
|
359 |
+
vn,
|
360 |
+
torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device=vn.device),
|
361 |
+
)
|
362 |
+
vn = safe_normalize(vn)
|
363 |
+
|
364 |
+
self.vn = vn
|
365 |
+
self.fn = self.f
|
366 |
+
|
367 |
+
def auto_uv(self, cache_path=None, vmap=True):
|
368 |
+
# try to load cache
|
369 |
+
if cache_path is not None:
|
370 |
+
cache_path = os.path.splitext(cache_path)[0] + "_uv.npz"
|
371 |
+
if cache_path is not None and os.path.exists(cache_path):
|
372 |
+
data = np.load(cache_path)
|
373 |
+
vt_np, ft_np, vmapping = data["vt"], data["ft"], data["vmapping"]
|
374 |
+
else:
|
375 |
+
import xatlas
|
376 |
+
|
377 |
+
v_np = self.v.detach().cpu().numpy()
|
378 |
+
f_np = self.f.detach().int().cpu().numpy()
|
379 |
+
atlas = xatlas.Atlas()
|
380 |
+
atlas.add_mesh(v_np, f_np)
|
381 |
+
chart_options = xatlas.ChartOptions()
|
382 |
+
# chart_options.max_iterations = 4
|
383 |
+
atlas.generate(chart_options=chart_options)
|
384 |
+
vmapping, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2]
|
385 |
+
|
386 |
+
# save to cache
|
387 |
+
if cache_path is not None:
|
388 |
+
np.savez(cache_path, vt=vt_np, ft=ft_np, vmapping=vmapping)
|
389 |
+
|
390 |
+
vt = torch.from_numpy(vt_np.astype(np.float32)).to(self.device)
|
391 |
+
ft = torch.from_numpy(ft_np.astype(np.int32)).to(self.device)
|
392 |
+
self.vt = vt
|
393 |
+
self.ft = ft
|
394 |
+
|
395 |
+
if vmap:
|
396 |
+
# remap v/f to vt/ft, so each v correspond to a unique vt. (necessary for gltf)
|
397 |
+
vmapping = torch.from_numpy(vmapping.astype(np.int64)).long().to(self.device)
|
398 |
+
self.align_v_to_vt(vmapping)
|
399 |
+
|
400 |
+
def align_v_to_vt(self, vmapping=None):
|
401 |
+
# remap v/f and vn/vn to vt/ft.
|
402 |
+
if vmapping is None:
|
403 |
+
ft = self.ft.view(-1).long()
|
404 |
+
f = self.f.view(-1).long()
|
405 |
+
vmapping = torch.zeros(self.vt.shape[0], dtype=torch.long, device=self.device)
|
406 |
+
vmapping[ft] = f # scatter, randomly choose one if index is not unique
|
407 |
+
|
408 |
+
self.v = self.v[vmapping]
|
409 |
+
self.f = self.ft
|
410 |
+
# assume fn == f
|
411 |
+
if self.vn is not None:
|
412 |
+
self.vn = self.vn[vmapping]
|
413 |
+
self.fn = self.ft
|
414 |
+
|
415 |
+
def to(self, device):
|
416 |
+
self.device = device
|
417 |
+
for name in ["v", "f", "vn", "fn", "vt", "ft", "albedo"]:
|
418 |
+
tensor = getattr(self, name)
|
419 |
+
if tensor is not None:
|
420 |
+
setattr(self, name, tensor.to(device))
|
421 |
+
return self
|
422 |
+
|
423 |
+
def write(self, path):
|
424 |
+
if path.endswith(".ply"):
|
425 |
+
self.write_ply(path)
|
426 |
+
elif path.endswith(".obj"):
|
427 |
+
self.write_obj(path)
|
428 |
+
elif path.endswith(".glb") or path.endswith(".gltf"):
|
429 |
+
self.write_glb(path)
|
430 |
+
else:
|
431 |
+
raise NotImplementedError(f"format {path} not supported!")
|
432 |
+
|
433 |
+
# write to ply file (only geom)
|
434 |
+
def write_ply(self, path):
|
435 |
+
|
436 |
+
v_np = self.v.detach().cpu().numpy()
|
437 |
+
f_np = self.f.detach().cpu().numpy()
|
438 |
+
|
439 |
+
_mesh = trimesh.Trimesh(vertices=v_np, faces=f_np)
|
440 |
+
_mesh.export(path)
|
441 |
+
|
442 |
+
# write to gltf/glb file (geom + texture)
|
443 |
+
def write_glb(self, path):
|
444 |
+
|
445 |
+
assert self.vn is not None and self.vt is not None # should be improved to support export without texture...
|
446 |
+
|
447 |
+
# assert self.v.shape[0] == self.vn.shape[0] and self.v.shape[0] == self.vt.shape[0]
|
448 |
+
if self.v.shape[0] != self.vt.shape[0]:
|
449 |
+
self.align_v_to_vt()
|
450 |
+
|
451 |
+
# assume f == fn == ft
|
452 |
+
|
453 |
+
import pygltflib
|
454 |
+
|
455 |
+
f_np = self.f.detach().cpu().numpy().astype(np.uint32)
|
456 |
+
v_np = self.v.detach().cpu().numpy().astype(np.float32)
|
457 |
+
# vn_np = self.vn.detach().cpu().numpy().astype(np.float32)
|
458 |
+
vt_np = self.vt.detach().cpu().numpy().astype(np.float32)
|
459 |
+
|
460 |
+
albedo = self.albedo.detach().cpu().numpy()
|
461 |
+
albedo = (albedo * 255).astype(np.uint8)
|
462 |
+
albedo = cv2.cvtColor(albedo, cv2.COLOR_RGB2BGR)
|
463 |
+
|
464 |
+
f_np_blob = f_np.flatten().tobytes()
|
465 |
+
v_np_blob = v_np.tobytes()
|
466 |
+
# vn_np_blob = vn_np.tobytes()
|
467 |
+
vt_np_blob = vt_np.tobytes()
|
468 |
+
albedo_blob = cv2.imencode('.png', albedo)[1].tobytes()
|
469 |
+
|
470 |
+
gltf = pygltflib.GLTF2(
|
471 |
+
scene=0,
|
472 |
+
scenes=[pygltflib.Scene(nodes=[0])],
|
473 |
+
nodes=[pygltflib.Node(mesh=0)],
|
474 |
+
meshes=[pygltflib.Mesh(primitives=[
|
475 |
+
pygltflib.Primitive(
|
476 |
+
# indices to accessors (0 is triangles)
|
477 |
+
attributes=pygltflib.Attributes(
|
478 |
+
POSITION=1, TEXCOORD_0=2,
|
479 |
+
),
|
480 |
+
indices=0, material=0,
|
481 |
+
)
|
482 |
+
])],
|
483 |
+
materials=[
|
484 |
+
pygltflib.Material(
|
485 |
+
pbrMetallicRoughness=pygltflib.PbrMetallicRoughness(
|
486 |
+
baseColorTexture=pygltflib.TextureInfo(index=0, texCoord=0),
|
487 |
+
metallicFactor=0.0,
|
488 |
+
roughnessFactor=1.0,
|
489 |
+
),
|
490 |
+
alphaCutoff=0,
|
491 |
+
doubleSided=True,
|
492 |
+
)
|
493 |
+
],
|
494 |
+
textures=[
|
495 |
+
pygltflib.Texture(sampler=0, source=0),
|
496 |
+
],
|
497 |
+
samplers=[
|
498 |
+
pygltflib.Sampler(magFilter=pygltflib.LINEAR, minFilter=pygltflib.LINEAR_MIPMAP_LINEAR, wrapS=pygltflib.REPEAT, wrapT=pygltflib.REPEAT),
|
499 |
+
],
|
500 |
+
images=[
|
501 |
+
# use embedded (buffer) image
|
502 |
+
pygltflib.Image(bufferView=3, mimeType="image/png"),
|
503 |
+
],
|
504 |
+
buffers=[
|
505 |
+
pygltflib.Buffer(byteLength=len(f_np_blob) + len(v_np_blob) + len(vt_np_blob) + len(albedo_blob))
|
506 |
+
],
|
507 |
+
# buffer view (based on dtype)
|
508 |
+
bufferViews=[
|
509 |
+
# triangles; as flatten (element) array
|
510 |
+
pygltflib.BufferView(
|
511 |
+
buffer=0,
|
512 |
+
byteLength=len(f_np_blob),
|
513 |
+
target=pygltflib.ELEMENT_ARRAY_BUFFER, # GL_ELEMENT_ARRAY_BUFFER (34963)
|
514 |
+
),
|
515 |
+
# positions; as vec3 array
|
516 |
+
pygltflib.BufferView(
|
517 |
+
buffer=0,
|
518 |
+
byteOffset=len(f_np_blob),
|
519 |
+
byteLength=len(v_np_blob),
|
520 |
+
byteStride=12, # vec3
|
521 |
+
target=pygltflib.ARRAY_BUFFER, # GL_ARRAY_BUFFER (34962)
|
522 |
+
),
|
523 |
+
# texcoords; as vec2 array
|
524 |
+
pygltflib.BufferView(
|
525 |
+
buffer=0,
|
526 |
+
byteOffset=len(f_np_blob) + len(v_np_blob),
|
527 |
+
byteLength=len(vt_np_blob),
|
528 |
+
byteStride=8, # vec2
|
529 |
+
target=pygltflib.ARRAY_BUFFER,
|
530 |
+
),
|
531 |
+
# texture; as none target
|
532 |
+
pygltflib.BufferView(
|
533 |
+
buffer=0,
|
534 |
+
byteOffset=len(f_np_blob) + len(v_np_blob) + len(vt_np_blob),
|
535 |
+
byteLength=len(albedo_blob),
|
536 |
+
),
|
537 |
+
],
|
538 |
+
accessors=[
|
539 |
+
# 0 = triangles
|
540 |
+
pygltflib.Accessor(
|
541 |
+
bufferView=0,
|
542 |
+
componentType=pygltflib.UNSIGNED_INT, # GL_UNSIGNED_INT (5125)
|
543 |
+
count=f_np.size,
|
544 |
+
type=pygltflib.SCALAR,
|
545 |
+
max=[int(f_np.max())],
|
546 |
+
min=[int(f_np.min())],
|
547 |
+
),
|
548 |
+
# 1 = positions
|
549 |
+
pygltflib.Accessor(
|
550 |
+
bufferView=1,
|
551 |
+
componentType=pygltflib.FLOAT, # GL_FLOAT (5126)
|
552 |
+
count=len(v_np),
|
553 |
+
type=pygltflib.VEC3,
|
554 |
+
max=v_np.max(axis=0).tolist(),
|
555 |
+
min=v_np.min(axis=0).tolist(),
|
556 |
+
),
|
557 |
+
# 2 = texcoords
|
558 |
+
pygltflib.Accessor(
|
559 |
+
bufferView=2,
|
560 |
+
componentType=pygltflib.FLOAT,
|
561 |
+
count=len(vt_np),
|
562 |
+
type=pygltflib.VEC2,
|
563 |
+
max=vt_np.max(axis=0).tolist(),
|
564 |
+
min=vt_np.min(axis=0).tolist(),
|
565 |
+
),
|
566 |
+
],
|
567 |
+
)
|
568 |
+
|
569 |
+
# set actual data
|
570 |
+
gltf.set_binary_blob(f_np_blob + v_np_blob + vt_np_blob + albedo_blob)
|
571 |
+
|
572 |
+
# glb = b"".join(gltf.save_to_bytes())
|
573 |
+
gltf.save(path)
|
574 |
+
|
575 |
+
# write to obj file (geom + texture)
|
576 |
+
def write_obj(self, path):
|
577 |
+
|
578 |
+
mtl_path = path.replace(".obj", ".mtl")
|
579 |
+
albedo_path = path.replace(".obj", "_albedo.png")
|
580 |
+
|
581 |
+
v_np = self.v.detach().cpu().numpy()
|
582 |
+
vt_np = self.vt.detach().cpu().numpy() if self.vt is not None else None
|
583 |
+
vn_np = self.vn.detach().cpu().numpy() if self.vn is not None else None
|
584 |
+
f_np = self.f.detach().cpu().numpy()
|
585 |
+
ft_np = self.ft.detach().cpu().numpy() if self.ft is not None else None
|
586 |
+
fn_np = self.fn.detach().cpu().numpy() if self.fn is not None else None
|
587 |
+
|
588 |
+
with open(path, "w") as fp:
|
589 |
+
fp.write(f"mtllib {os.path.basename(mtl_path)} \n")
|
590 |
+
|
591 |
+
for v in v_np:
|
592 |
+
fp.write(f"v {v[0]} {v[1]} {v[2]} \n")
|
593 |
+
|
594 |
+
if vt_np is not None:
|
595 |
+
for v in vt_np:
|
596 |
+
fp.write(f"vt {v[0]} {1 - v[1]} \n")
|
597 |
+
|
598 |
+
if vn_np is not None:
|
599 |
+
for v in vn_np:
|
600 |
+
fp.write(f"vn {v[0]} {v[1]} {v[2]} \n")
|
601 |
+
|
602 |
+
fp.write(f"usemtl defaultMat \n")
|
603 |
+
for i in range(len(f_np)):
|
604 |
+
fp.write(
|
605 |
+
f'f {f_np[i, 0] + 1}/{ft_np[i, 0] + 1 if ft_np is not None else ""}/{fn_np[i, 0] + 1 if fn_np is not None else ""} \
|
606 |
+
{f_np[i, 1] + 1}/{ft_np[i, 1] + 1 if ft_np is not None else ""}/{fn_np[i, 1] + 1 if fn_np is not None else ""} \
|
607 |
+
{f_np[i, 2] + 1}/{ft_np[i, 2] + 1 if ft_np is not None else ""}/{fn_np[i, 2] + 1 if fn_np is not None else ""} \n'
|
608 |
+
)
|
609 |
+
|
610 |
+
with open(mtl_path, "w") as fp:
|
611 |
+
fp.write(f"newmtl defaultMat \n")
|
612 |
+
fp.write(f"Ka 1 1 1 \n")
|
613 |
+
fp.write(f"Kd 1 1 1 \n")
|
614 |
+
fp.write(f"Ks 0 0 0 \n")
|
615 |
+
fp.write(f"Tr 1 \n")
|
616 |
+
fp.write(f"illum 1 \n")
|
617 |
+
fp.write(f"Ns 0 \n")
|
618 |
+
fp.write(f"map_Kd {os.path.basename(albedo_path)} \n")
|
619 |
+
|
620 |
+
albedo = self.albedo.detach().cpu().numpy()
|
621 |
+
albedo = (albedo * 255).astype(np.uint8)
|
622 |
+
cv2.imwrite(albedo_path, cv2.cvtColor(albedo, cv2.COLOR_RGB2BGR))
|
mesh_renderer.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import cv2
|
4 |
+
import trimesh
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
import nvdiffrast.torch as dr
|
12 |
+
from mesh import Mesh, safe_normalize
|
13 |
+
|
14 |
+
def scale_img_nhwc(x, size, mag='bilinear', min='bilinear'):
|
15 |
+
assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other"
|
16 |
+
y = x.permute(0, 3, 1, 2) # NHWC -> NCHW
|
17 |
+
if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger
|
18 |
+
y = torch.nn.functional.interpolate(y, size, mode=min)
|
19 |
+
else: # Magnification
|
20 |
+
if mag == 'bilinear' or mag == 'bicubic':
|
21 |
+
y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True)
|
22 |
+
else:
|
23 |
+
y = torch.nn.functional.interpolate(y, size, mode=mag)
|
24 |
+
return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC
|
25 |
+
|
26 |
+
def scale_img_hwc(x, size, mag='bilinear', min='bilinear'):
|
27 |
+
return scale_img_nhwc(x[None, ...], size, mag, min)[0]
|
28 |
+
|
29 |
+
def scale_img_nhw(x, size, mag='bilinear', min='bilinear'):
|
30 |
+
return scale_img_nhwc(x[..., None], size, mag, min)[..., 0]
|
31 |
+
|
32 |
+
def scale_img_hw(x, size, mag='bilinear', min='bilinear'):
|
33 |
+
return scale_img_nhwc(x[None, ..., None], size, mag, min)[0, ..., 0]
|
34 |
+
|
35 |
+
def trunc_rev_sigmoid(x, eps=1e-6):
|
36 |
+
x = x.clamp(eps, 1 - eps)
|
37 |
+
return torch.log(x / (1 - x))
|
38 |
+
|
39 |
+
def make_divisible(x, m=8):
|
40 |
+
return int(math.ceil(x / m) * m)
|
41 |
+
|
42 |
+
class Renderer(nn.Module):
|
43 |
+
def __init__(self, opt):
|
44 |
+
|
45 |
+
super().__init__()
|
46 |
+
|
47 |
+
self.opt = opt
|
48 |
+
|
49 |
+
self.mesh = Mesh.load(self.opt.mesh, resize=False)
|
50 |
+
|
51 |
+
if not self.opt.force_cuda_rast and (not self.opt.gui or os.name == 'nt'):
|
52 |
+
self.glctx = dr.RasterizeGLContext()
|
53 |
+
else:
|
54 |
+
self.glctx = dr.RasterizeCudaContext()
|
55 |
+
|
56 |
+
# extract trainable parameters
|
57 |
+
self.v_offsets = nn.Parameter(torch.zeros_like(self.mesh.v))
|
58 |
+
self.raw_albedo = nn.Parameter(trunc_rev_sigmoid(self.mesh.albedo))
|
59 |
+
|
60 |
+
|
61 |
+
def get_params(self):
|
62 |
+
|
63 |
+
params = [
|
64 |
+
{'params': self.raw_albedo, 'lr': self.opt.texture_lr},
|
65 |
+
]
|
66 |
+
|
67 |
+
if self.opt.train_geo:
|
68 |
+
params.append({'params': self.v_offsets, 'lr': self.opt.geom_lr})
|
69 |
+
|
70 |
+
return params
|
71 |
+
|
72 |
+
@torch.no_grad()
|
73 |
+
def export_mesh(self, save_path):
|
74 |
+
self.mesh.v = (self.mesh.v + self.v_offsets).detach()
|
75 |
+
self.mesh.albedo = torch.sigmoid(self.raw_albedo.detach())
|
76 |
+
self.mesh.write(save_path)
|
77 |
+
|
78 |
+
|
79 |
+
def render(self, pose, proj, h0, w0, ssaa=1, bg_color=1, texture_filter='linear-mipmap-linear'):
|
80 |
+
|
81 |
+
# do super-sampling
|
82 |
+
if ssaa != 1:
|
83 |
+
h = make_divisible(h0 * ssaa, 8)
|
84 |
+
w = make_divisible(w0 * ssaa, 8)
|
85 |
+
else:
|
86 |
+
h, w = h0, w0
|
87 |
+
|
88 |
+
results = {}
|
89 |
+
|
90 |
+
# get v
|
91 |
+
if self.opt.train_geo:
|
92 |
+
v = self.mesh.v + self.v_offsets # [N, 3]
|
93 |
+
else:
|
94 |
+
v = self.mesh.v
|
95 |
+
|
96 |
+
pose = torch.from_numpy(pose.astype(np.float32)).to(v.device)
|
97 |
+
proj = torch.from_numpy(proj.astype(np.float32)).to(v.device)
|
98 |
+
|
99 |
+
# get v_clip and render rgb
|
100 |
+
v_cam = torch.matmul(F.pad(v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0)
|
101 |
+
v_clip = v_cam @ proj.T
|
102 |
+
|
103 |
+
rast, rast_db = dr.rasterize(self.glctx, v_clip, self.mesh.f, (h, w))
|
104 |
+
|
105 |
+
alpha = (rast[0, ..., 3:] > 0).float()
|
106 |
+
depth, _ = dr.interpolate(-v_cam[..., [2]], rast, self.mesh.f) # [1, H, W, 1]
|
107 |
+
depth = depth.squeeze(0) # [H, W, 1]
|
108 |
+
|
109 |
+
texc, texc_db = dr.interpolate(self.mesh.vt.unsqueeze(0).contiguous(), rast, self.mesh.ft, rast_db=rast_db, diff_attrs='all')
|
110 |
+
albedo = dr.texture(self.raw_albedo.unsqueeze(0), texc, uv_da=texc_db, filter_mode=texture_filter) # [1, H, W, 3]
|
111 |
+
albedo = torch.sigmoid(albedo)
|
112 |
+
# get vn and render normal
|
113 |
+
if self.opt.train_geo:
|
114 |
+
i0, i1, i2 = self.mesh.f[:, 0].long(), self.mesh.f[:, 1].long(), self.mesh.f[:, 2].long()
|
115 |
+
v0, v1, v2 = v[i0, :], v[i1, :], v[i2, :]
|
116 |
+
|
117 |
+
face_normals = torch.cross(v1 - v0, v2 - v0)
|
118 |
+
face_normals = safe_normalize(face_normals)
|
119 |
+
|
120 |
+
vn = torch.zeros_like(v)
|
121 |
+
vn.scatter_add_(0, i0[:, None].repeat(1,3), face_normals)
|
122 |
+
vn.scatter_add_(0, i1[:, None].repeat(1,3), face_normals)
|
123 |
+
vn.scatter_add_(0, i2[:, None].repeat(1,3), face_normals)
|
124 |
+
|
125 |
+
vn = torch.where(torch.sum(vn * vn, -1, keepdim=True) > 1e-20, vn, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device=vn.device))
|
126 |
+
else:
|
127 |
+
vn = self.mesh.vn
|
128 |
+
|
129 |
+
normal, _ = dr.interpolate(vn.unsqueeze(0).contiguous(), rast, self.mesh.fn)
|
130 |
+
normal = safe_normalize(normal[0])
|
131 |
+
|
132 |
+
# rotated normal (where [0, 0, 1] always faces camera)
|
133 |
+
rot_normal = normal @ pose[:3, :3]
|
134 |
+
viewcos = rot_normal[..., [2]]
|
135 |
+
|
136 |
+
# antialias
|
137 |
+
albedo = dr.antialias(albedo, rast, v_clip, self.mesh.f).squeeze(0) # [H, W, 3]
|
138 |
+
albedo = alpha * albedo + (1 - alpha) * bg_color
|
139 |
+
|
140 |
+
# ssaa
|
141 |
+
if ssaa != 1:
|
142 |
+
albedo = scale_img_hwc(albedo, (h0, w0))
|
143 |
+
alpha = scale_img_hwc(alpha, (h0, w0))
|
144 |
+
depth = scale_img_hwc(depth, (h0, w0))
|
145 |
+
normal = scale_img_hwc(normal, (h0, w0))
|
146 |
+
viewcos = scale_img_hwc(viewcos, (h0, w0))
|
147 |
+
|
148 |
+
results['image'] = albedo.clamp(0, 1)
|
149 |
+
results['alpha'] = alpha
|
150 |
+
results['depth'] = depth
|
151 |
+
results['normal'] = (normal + 1) / 2
|
152 |
+
results['viewcos'] = viewcos
|
153 |
+
|
154 |
+
return results
|
mesh_utils.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pymeshlab as pml
|
3 |
+
|
4 |
+
|
5 |
+
def poisson_mesh_reconstruction(points, normals=None):
|
6 |
+
# points/normals: [N, 3] np.ndarray
|
7 |
+
|
8 |
+
import open3d as o3d
|
9 |
+
|
10 |
+
pcd = o3d.geometry.PointCloud()
|
11 |
+
pcd.points = o3d.utility.Vector3dVector(points)
|
12 |
+
|
13 |
+
# outlier removal
|
14 |
+
pcd, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=10)
|
15 |
+
|
16 |
+
# normals
|
17 |
+
if normals is None:
|
18 |
+
pcd.estimate_normals()
|
19 |
+
else:
|
20 |
+
pcd.normals = o3d.utility.Vector3dVector(normals[ind])
|
21 |
+
|
22 |
+
# visualize
|
23 |
+
o3d.visualization.draw_geometries([pcd], point_show_normal=False)
|
24 |
+
|
25 |
+
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
|
26 |
+
pcd, depth=9
|
27 |
+
)
|
28 |
+
vertices_to_remove = densities < np.quantile(densities, 0.1)
|
29 |
+
mesh.remove_vertices_by_mask(vertices_to_remove)
|
30 |
+
|
31 |
+
# visualize
|
32 |
+
o3d.visualization.draw_geometries([mesh])
|
33 |
+
|
34 |
+
vertices = np.asarray(mesh.vertices)
|
35 |
+
triangles = np.asarray(mesh.triangles)
|
36 |
+
|
37 |
+
print(
|
38 |
+
f"[INFO] poisson mesh reconstruction: {points.shape} --> {vertices.shape} / {triangles.shape}"
|
39 |
+
)
|
40 |
+
|
41 |
+
return vertices, triangles
|
42 |
+
|
43 |
+
|
44 |
+
def decimate_mesh(
|
45 |
+
verts, faces, target, backend="pymeshlab", remesh=False, optimalplacement=True
|
46 |
+
):
|
47 |
+
# optimalplacement: default is True, but for flat mesh must turn False to prevent spike artifect.
|
48 |
+
|
49 |
+
_ori_vert_shape = verts.shape
|
50 |
+
_ori_face_shape = faces.shape
|
51 |
+
|
52 |
+
if backend == "pyfqmr":
|
53 |
+
import pyfqmr
|
54 |
+
|
55 |
+
solver = pyfqmr.Simplify()
|
56 |
+
solver.setMesh(verts, faces)
|
57 |
+
solver.simplify_mesh(target_count=target, preserve_border=False, verbose=False)
|
58 |
+
verts, faces, normals = solver.getMesh()
|
59 |
+
else:
|
60 |
+
m = pml.Mesh(verts, faces)
|
61 |
+
ms = pml.MeshSet()
|
62 |
+
ms.add_mesh(m, "mesh") # will copy!
|
63 |
+
|
64 |
+
# filters
|
65 |
+
# ms.meshing_decimation_clustering(threshold=pml.Percentage(1))
|
66 |
+
ms.meshing_decimation_quadric_edge_collapse(
|
67 |
+
targetfacenum=int(target), optimalplacement=optimalplacement
|
68 |
+
)
|
69 |
+
|
70 |
+
if remesh:
|
71 |
+
# ms.apply_coord_taubin_smoothing()
|
72 |
+
ms.meshing_isotropic_explicit_remeshing(
|
73 |
+
iterations=3, targetlen=pml.Percentage(1)
|
74 |
+
)
|
75 |
+
|
76 |
+
# extract mesh
|
77 |
+
m = ms.current_mesh()
|
78 |
+
verts = m.vertex_matrix()
|
79 |
+
faces = m.face_matrix()
|
80 |
+
|
81 |
+
print(
|
82 |
+
f"[INFO] mesh decimation: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}"
|
83 |
+
)
|
84 |
+
|
85 |
+
return verts, faces
|
86 |
+
|
87 |
+
|
88 |
+
def clean_mesh(
|
89 |
+
verts,
|
90 |
+
faces,
|
91 |
+
v_pct=1,
|
92 |
+
min_f=64,
|
93 |
+
min_d=20,
|
94 |
+
repair=True,
|
95 |
+
remesh=True,
|
96 |
+
remesh_size=0.01,
|
97 |
+
):
|
98 |
+
# verts: [N, 3]
|
99 |
+
# faces: [N, 3]
|
100 |
+
|
101 |
+
_ori_vert_shape = verts.shape
|
102 |
+
_ori_face_shape = faces.shape
|
103 |
+
|
104 |
+
m = pml.Mesh(verts, faces)
|
105 |
+
ms = pml.MeshSet()
|
106 |
+
ms.add_mesh(m, "mesh") # will copy!
|
107 |
+
|
108 |
+
# filters
|
109 |
+
ms.meshing_remove_unreferenced_vertices() # verts not refed by any faces
|
110 |
+
|
111 |
+
if v_pct > 0:
|
112 |
+
ms.meshing_merge_close_vertices(
|
113 |
+
threshold=pml.Percentage(v_pct)
|
114 |
+
) # 1/10000 of bounding box diagonal
|
115 |
+
|
116 |
+
ms.meshing_remove_duplicate_faces() # faces defined by the same verts
|
117 |
+
ms.meshing_remove_null_faces() # faces with area == 0
|
118 |
+
|
119 |
+
if min_d > 0:
|
120 |
+
ms.meshing_remove_connected_component_by_diameter(
|
121 |
+
mincomponentdiag=pml.Percentage(min_d)
|
122 |
+
)
|
123 |
+
|
124 |
+
if min_f > 0:
|
125 |
+
ms.meshing_remove_connected_component_by_face_number(mincomponentsize=min_f)
|
126 |
+
|
127 |
+
if repair:
|
128 |
+
# ms.meshing_remove_t_vertices(method=0, threshold=40, repeat=True)
|
129 |
+
ms.meshing_repair_non_manifold_edges(method=0)
|
130 |
+
ms.meshing_repair_non_manifold_vertices(vertdispratio=0)
|
131 |
+
|
132 |
+
if remesh:
|
133 |
+
# ms.apply_coord_taubin_smoothing()
|
134 |
+
ms.meshing_isotropic_explicit_remeshing(
|
135 |
+
iterations=3, targetlen=pml.AbsoluteValue(remesh_size)
|
136 |
+
)
|
137 |
+
|
138 |
+
# extract mesh
|
139 |
+
m = ms.current_mesh()
|
140 |
+
verts = m.vertex_matrix()
|
141 |
+
faces = m.face_matrix()
|
142 |
+
|
143 |
+
print(
|
144 |
+
f"[INFO] mesh cleaning: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}"
|
145 |
+
)
|
146 |
+
|
147 |
+
return verts, faces
|
process.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import sys
|
4 |
+
import cv2
|
5 |
+
import argparse
|
6 |
+
import numpy as np
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torchvision import transforms
|
13 |
+
from PIL import Image
|
14 |
+
import rembg
|
15 |
+
|
16 |
+
class BLIP2():
|
17 |
+
def __init__(self, device='cuda'):
|
18 |
+
self.device = device
|
19 |
+
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
20 |
+
self.processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
21 |
+
self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16).to(device)
|
22 |
+
|
23 |
+
@torch.no_grad()
|
24 |
+
def __call__(self, image):
|
25 |
+
image = Image.fromarray(image)
|
26 |
+
inputs = self.processor(image, return_tensors="pt").to(self.device, torch.float16)
|
27 |
+
|
28 |
+
generated_ids = self.model.generate(**inputs, max_new_tokens=20)
|
29 |
+
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
30 |
+
|
31 |
+
return generated_text
|
32 |
+
|
33 |
+
|
34 |
+
if __name__ == '__main__':
|
35 |
+
|
36 |
+
parser = argparse.ArgumentParser()
|
37 |
+
parser.add_argument('path', type=str, help="path to image (png, jpeg, etc.)")
|
38 |
+
parser.add_argument('--model', default='u2net', type=str, help="rembg model, see https://github.com/danielgatis/rembg#models")
|
39 |
+
parser.add_argument('--size', default=256, type=int, help="output resolution")
|
40 |
+
parser.add_argument('--border_ratio', default=0.2, type=float, help="output border ratio")
|
41 |
+
parser.add_argument('--recenter', type=bool, default=True, help="recenter, potentially not helpful for multiview zero123")
|
42 |
+
opt = parser.parse_args()
|
43 |
+
|
44 |
+
session = rembg.new_session(model_name=opt.model)
|
45 |
+
|
46 |
+
if os.path.isdir(opt.path):
|
47 |
+
print(f'[INFO] processing directory {opt.path}...')
|
48 |
+
files = glob.glob(f'{opt.path}/*')
|
49 |
+
out_dir = opt.path
|
50 |
+
else: # isfile
|
51 |
+
files = [opt.path]
|
52 |
+
out_dir = os.path.dirname(opt.path)
|
53 |
+
|
54 |
+
for file in files:
|
55 |
+
|
56 |
+
out_base = os.path.basename(file).split('.')[0]
|
57 |
+
out_rgba = os.path.join(out_dir, out_base + '_rgba.png')
|
58 |
+
|
59 |
+
# load image
|
60 |
+
print(f'[INFO] loading image {file}...')
|
61 |
+
image = cv2.imread(file, cv2.IMREAD_UNCHANGED)
|
62 |
+
|
63 |
+
# carve background
|
64 |
+
print(f'[INFO] background removal...')
|
65 |
+
carved_image = rembg.remove(image, session=session) # [H, W, 4]
|
66 |
+
mask = carved_image[..., -1] > 0
|
67 |
+
|
68 |
+
# recenter
|
69 |
+
if opt.recenter:
|
70 |
+
print(f'[INFO] recenter...')
|
71 |
+
final_rgba = np.zeros((opt.size, opt.size, 4), dtype=np.uint8)
|
72 |
+
|
73 |
+
coords = np.nonzero(mask)
|
74 |
+
x_min, x_max = coords[0].min(), coords[0].max()
|
75 |
+
y_min, y_max = coords[1].min(), coords[1].max()
|
76 |
+
h = x_max - x_min
|
77 |
+
w = y_max - y_min
|
78 |
+
desired_size = int(opt.size * (1 - opt.border_ratio))
|
79 |
+
scale = desired_size / max(h, w)
|
80 |
+
h2 = int(h * scale)
|
81 |
+
w2 = int(w * scale)
|
82 |
+
x2_min = (opt.size - h2) // 2
|
83 |
+
x2_max = x2_min + h2
|
84 |
+
y2_min = (opt.size - w2) // 2
|
85 |
+
y2_max = y2_min + w2
|
86 |
+
final_rgba[x2_min:x2_max, y2_min:y2_max] = cv2.resize(carved_image[x_min:x_max, y_min:y_max], (w2, h2), interpolation=cv2.INTER_AREA)
|
87 |
+
|
88 |
+
else:
|
89 |
+
final_rgba = carved_image
|
90 |
+
|
91 |
+
# write image
|
92 |
+
cv2.imwrite(out_rgba, final_rgba)
|
requirements.txt
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tqdm
|
2 |
+
rich
|
3 |
+
ninja
|
4 |
+
numpy
|
5 |
+
pandas
|
6 |
+
scipy
|
7 |
+
scikit-learn
|
8 |
+
matplotlib
|
9 |
+
opencv-python
|
10 |
+
imageio
|
11 |
+
imageio-ffmpeg
|
12 |
+
omegaconf
|
13 |
+
|
14 |
+
torch==2.0.0 --index-url https://download.pytorch.org/whl/cu118
|
15 |
+
torchvision==0.15.1 --index-url https://download.pytorch.org/whl/cu118
|
16 |
+
torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118
|
17 |
+
einops
|
18 |
+
plyfile
|
19 |
+
pygltflib
|
20 |
+
torchvision
|
21 |
+
|
22 |
+
# for gui
|
23 |
+
dearpygui
|
24 |
+
|
25 |
+
# for stable-diffusion
|
26 |
+
huggingface_hub
|
27 |
+
diffusers == 0.21.4 # fix loading zero123 temporarily
|
28 |
+
accelerate
|
29 |
+
transformers
|
30 |
+
|
31 |
+
# for dmtet and mesh export
|
32 |
+
xatlas
|
33 |
+
trimesh
|
34 |
+
PyMCubes
|
35 |
+
pymeshlab==2022.2.post4
|
36 |
+
|
37 |
+
rembg[gpu,cli]
|
38 |
+
|
39 |
+
# gradio demo
|
40 |
+
gradio
|
41 |
+
|
42 |
+
|
43 |
+
-e git+https://github.com/NVlabs/nvdiffrast.git@main#egg=nvdiffrast
|
44 |
+
-e git+https://github.com/ashawkey/kiuikit.git@main#egg=kiui
|
sh_utils.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The PlenOctree Authors.
|
2 |
+
# Redistribution and use in source and binary forms, with or without
|
3 |
+
# modification, are permitted provided that the following conditions are met:
|
4 |
+
#
|
5 |
+
# 1. Redistributions of source code must retain the above copyright notice,
|
6 |
+
# this list of conditions and the following disclaimer.
|
7 |
+
#
|
8 |
+
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
9 |
+
# this list of conditions and the following disclaimer in the documentation
|
10 |
+
# and/or other materials provided with the distribution.
|
11 |
+
#
|
12 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
13 |
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
14 |
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
15 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
16 |
+
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
17 |
+
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
18 |
+
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
19 |
+
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
20 |
+
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
21 |
+
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
22 |
+
# POSSIBILITY OF SUCH DAMAGE.
|
23 |
+
|
24 |
+
import torch
|
25 |
+
|
26 |
+
C0 = 0.28209479177387814
|
27 |
+
C1 = 0.4886025119029199
|
28 |
+
C2 = [
|
29 |
+
1.0925484305920792,
|
30 |
+
-1.0925484305920792,
|
31 |
+
0.31539156525252005,
|
32 |
+
-1.0925484305920792,
|
33 |
+
0.5462742152960396
|
34 |
+
]
|
35 |
+
C3 = [
|
36 |
+
-0.5900435899266435,
|
37 |
+
2.890611442640554,
|
38 |
+
-0.4570457994644658,
|
39 |
+
0.3731763325901154,
|
40 |
+
-0.4570457994644658,
|
41 |
+
1.445305721320277,
|
42 |
+
-0.5900435899266435
|
43 |
+
]
|
44 |
+
C4 = [
|
45 |
+
2.5033429417967046,
|
46 |
+
-1.7701307697799304,
|
47 |
+
0.9461746957575601,
|
48 |
+
-0.6690465435572892,
|
49 |
+
0.10578554691520431,
|
50 |
+
-0.6690465435572892,
|
51 |
+
0.47308734787878004,
|
52 |
+
-1.7701307697799304,
|
53 |
+
0.6258357354491761,
|
54 |
+
]
|
55 |
+
|
56 |
+
|
57 |
+
def eval_sh(deg, sh, dirs):
|
58 |
+
"""
|
59 |
+
Evaluate spherical harmonics at unit directions
|
60 |
+
using hardcoded SH polynomials.
|
61 |
+
Works with torch/np/jnp.
|
62 |
+
... Can be 0 or more batch dimensions.
|
63 |
+
Args:
|
64 |
+
deg: int SH deg. Currently, 0-3 supported
|
65 |
+
sh: jnp.ndarray SH coeffs [..., C, (deg + 1) ** 2]
|
66 |
+
dirs: jnp.ndarray unit directions [..., 3]
|
67 |
+
Returns:
|
68 |
+
[..., C]
|
69 |
+
"""
|
70 |
+
assert deg <= 4 and deg >= 0
|
71 |
+
coeff = (deg + 1) ** 2
|
72 |
+
assert sh.shape[-1] >= coeff
|
73 |
+
|
74 |
+
result = C0 * sh[..., 0]
|
75 |
+
if deg > 0:
|
76 |
+
x, y, z = dirs[..., 0:1], dirs[..., 1:2], dirs[..., 2:3]
|
77 |
+
result = (result -
|
78 |
+
C1 * y * sh[..., 1] +
|
79 |
+
C1 * z * sh[..., 2] -
|
80 |
+
C1 * x * sh[..., 3])
|
81 |
+
|
82 |
+
if deg > 1:
|
83 |
+
xx, yy, zz = x * x, y * y, z * z
|
84 |
+
xy, yz, xz = x * y, y * z, x * z
|
85 |
+
result = (result +
|
86 |
+
C2[0] * xy * sh[..., 4] +
|
87 |
+
C2[1] * yz * sh[..., 5] +
|
88 |
+
C2[2] * (2.0 * zz - xx - yy) * sh[..., 6] +
|
89 |
+
C2[3] * xz * sh[..., 7] +
|
90 |
+
C2[4] * (xx - yy) * sh[..., 8])
|
91 |
+
|
92 |
+
if deg > 2:
|
93 |
+
result = (result +
|
94 |
+
C3[0] * y * (3 * xx - yy) * sh[..., 9] +
|
95 |
+
C3[1] * xy * z * sh[..., 10] +
|
96 |
+
C3[2] * y * (4 * zz - xx - yy)* sh[..., 11] +
|
97 |
+
C3[3] * z * (2 * zz - 3 * xx - 3 * yy) * sh[..., 12] +
|
98 |
+
C3[4] * x * (4 * zz - xx - yy) * sh[..., 13] +
|
99 |
+
C3[5] * z * (xx - yy) * sh[..., 14] +
|
100 |
+
C3[6] * x * (xx - 3 * yy) * sh[..., 15])
|
101 |
+
|
102 |
+
if deg > 3:
|
103 |
+
result = (result + C4[0] * xy * (xx - yy) * sh[..., 16] +
|
104 |
+
C4[1] * yz * (3 * xx - yy) * sh[..., 17] +
|
105 |
+
C4[2] * xy * (7 * zz - 1) * sh[..., 18] +
|
106 |
+
C4[3] * yz * (7 * zz - 3) * sh[..., 19] +
|
107 |
+
C4[4] * (zz * (35 * zz - 30) + 3) * sh[..., 20] +
|
108 |
+
C4[5] * xz * (7 * zz - 3) * sh[..., 21] +
|
109 |
+
C4[6] * (xx - yy) * (7 * zz - 1) * sh[..., 22] +
|
110 |
+
C4[7] * xz * (xx - 3 * yy) * sh[..., 23] +
|
111 |
+
C4[8] * (xx * (xx - 3 * yy) - yy * (3 * xx - yy)) * sh[..., 24])
|
112 |
+
return result
|
113 |
+
|
114 |
+
def RGB2SH(rgb):
|
115 |
+
return (rgb - 0.5) / C0
|
116 |
+
|
117 |
+
def SH2RGB(sh):
|
118 |
+
return sh * C0 + 0.5
|
zero123.py
ADDED
@@ -0,0 +1,666 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
import math
|
17 |
+
import warnings
|
18 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
19 |
+
|
20 |
+
import PIL
|
21 |
+
import torch
|
22 |
+
import torchvision.transforms.functional as TF
|
23 |
+
from diffusers.configuration_utils import ConfigMixin, FrozenDict, register_to_config
|
24 |
+
from diffusers.image_processor import VaeImageProcessor
|
25 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
26 |
+
from diffusers.models.modeling_utils import ModelMixin
|
27 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
28 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
29 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
30 |
+
StableDiffusionSafetyChecker,
|
31 |
+
)
|
32 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
33 |
+
from diffusers.utils import deprecate, is_accelerate_available, logging
|
34 |
+
from diffusers.utils.torch_utils import randn_tensor
|
35 |
+
from packaging import version
|
36 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
39 |
+
|
40 |
+
|
41 |
+
class CLIPCameraProjection(ModelMixin, ConfigMixin):
|
42 |
+
"""
|
43 |
+
A Projection layer for CLIP embedding and camera embedding.
|
44 |
+
|
45 |
+
Parameters:
|
46 |
+
embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `clip_embed`
|
47 |
+
additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the
|
48 |
+
projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings +
|
49 |
+
additional_embeddings`.
|
50 |
+
"""
|
51 |
+
|
52 |
+
@register_to_config
|
53 |
+
def __init__(self, embedding_dim: int = 768, additional_embeddings: int = 4):
|
54 |
+
super().__init__()
|
55 |
+
self.embedding_dim = embedding_dim
|
56 |
+
self.additional_embeddings = additional_embeddings
|
57 |
+
|
58 |
+
self.input_dim = self.embedding_dim + self.additional_embeddings
|
59 |
+
self.output_dim = self.embedding_dim
|
60 |
+
|
61 |
+
self.proj = torch.nn.Linear(self.input_dim, self.output_dim)
|
62 |
+
|
63 |
+
def forward(
|
64 |
+
self,
|
65 |
+
embedding: torch.FloatTensor,
|
66 |
+
):
|
67 |
+
"""
|
68 |
+
The [`PriorTransformer`] forward method.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
hidden_states (`torch.FloatTensor` of shape `(batch_size, input_dim)`):
|
72 |
+
The currently input embeddings.
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
The output embedding projection (`torch.FloatTensor` of shape `(batch_size, output_dim)`).
|
76 |
+
"""
|
77 |
+
proj_embedding = self.proj(embedding)
|
78 |
+
return proj_embedding
|
79 |
+
|
80 |
+
|
81 |
+
class Zero123Pipeline(DiffusionPipeline):
|
82 |
+
r"""
|
83 |
+
Pipeline to generate variations from an input image using Stable Diffusion.
|
84 |
+
|
85 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
86 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
87 |
+
|
88 |
+
Args:
|
89 |
+
vae ([`AutoencoderKL`]):
|
90 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
91 |
+
image_encoder ([`CLIPVisionModelWithProjection`]):
|
92 |
+
Frozen CLIP image-encoder. Stable Diffusion Image Variation uses the vision portion of
|
93 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection),
|
94 |
+
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
95 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
96 |
+
scheduler ([`SchedulerMixin`]):
|
97 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
98 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
99 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
100 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
101 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
102 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
103 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
104 |
+
"""
|
105 |
+
# TODO: feature_extractor is required to encode images (if they are in PIL format),
|
106 |
+
# we should give a descriptive message if the pipeline doesn't have one.
|
107 |
+
_optional_components = ["safety_checker"]
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
vae: AutoencoderKL,
|
112 |
+
image_encoder: CLIPVisionModelWithProjection,
|
113 |
+
unet: UNet2DConditionModel,
|
114 |
+
scheduler: KarrasDiffusionSchedulers,
|
115 |
+
safety_checker: StableDiffusionSafetyChecker,
|
116 |
+
feature_extractor: CLIPImageProcessor,
|
117 |
+
clip_camera_projection: CLIPCameraProjection,
|
118 |
+
requires_safety_checker: bool = True,
|
119 |
+
):
|
120 |
+
super().__init__()
|
121 |
+
|
122 |
+
if safety_checker is None and requires_safety_checker:
|
123 |
+
logger.warn(
|
124 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
125 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
126 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
127 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
128 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
129 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
130 |
+
)
|
131 |
+
|
132 |
+
if safety_checker is not None and feature_extractor is None:
|
133 |
+
raise ValueError(
|
134 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
135 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
136 |
+
)
|
137 |
+
|
138 |
+
is_unet_version_less_0_9_0 = hasattr(
|
139 |
+
unet.config, "_diffusers_version"
|
140 |
+
) and version.parse(
|
141 |
+
version.parse(unet.config._diffusers_version).base_version
|
142 |
+
) < version.parse(
|
143 |
+
"0.9.0.dev0"
|
144 |
+
)
|
145 |
+
is_unet_sample_size_less_64 = (
|
146 |
+
hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
147 |
+
)
|
148 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
149 |
+
deprecation_message = (
|
150 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
151 |
+
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
152 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
153 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
154 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
155 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
156 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
157 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
158 |
+
" the `unet/config.json` file"
|
159 |
+
)
|
160 |
+
deprecate(
|
161 |
+
"sample_size<64", "1.0.0", deprecation_message, standard_warn=False
|
162 |
+
)
|
163 |
+
new_config = dict(unet.config)
|
164 |
+
new_config["sample_size"] = 64
|
165 |
+
unet._internal_dict = FrozenDict(new_config)
|
166 |
+
|
167 |
+
self.register_modules(
|
168 |
+
vae=vae,
|
169 |
+
image_encoder=image_encoder,
|
170 |
+
unet=unet,
|
171 |
+
scheduler=scheduler,
|
172 |
+
safety_checker=safety_checker,
|
173 |
+
feature_extractor=feature_extractor,
|
174 |
+
clip_camera_projection=clip_camera_projection,
|
175 |
+
)
|
176 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
177 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
178 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
179 |
+
|
180 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
181 |
+
r"""
|
182 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
183 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
184 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
185 |
+
"""
|
186 |
+
if is_accelerate_available():
|
187 |
+
from accelerate import cpu_offload
|
188 |
+
else:
|
189 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
190 |
+
|
191 |
+
device = torch.device(f"cuda:{gpu_id}")
|
192 |
+
|
193 |
+
for cpu_offloaded_model in [
|
194 |
+
self.unet,
|
195 |
+
self.image_encoder,
|
196 |
+
self.vae,
|
197 |
+
self.safety_checker,
|
198 |
+
]:
|
199 |
+
if cpu_offloaded_model is not None:
|
200 |
+
cpu_offload(cpu_offloaded_model, device)
|
201 |
+
|
202 |
+
@property
|
203 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
204 |
+
def _execution_device(self):
|
205 |
+
r"""
|
206 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
207 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
208 |
+
hooks.
|
209 |
+
"""
|
210 |
+
if not hasattr(self.unet, "_hf_hook"):
|
211 |
+
return self.device
|
212 |
+
for module in self.unet.modules():
|
213 |
+
if (
|
214 |
+
hasattr(module, "_hf_hook")
|
215 |
+
and hasattr(module._hf_hook, "execution_device")
|
216 |
+
and module._hf_hook.execution_device is not None
|
217 |
+
):
|
218 |
+
return torch.device(module._hf_hook.execution_device)
|
219 |
+
return self.device
|
220 |
+
|
221 |
+
def _encode_image(
|
222 |
+
self,
|
223 |
+
image,
|
224 |
+
elevation,
|
225 |
+
azimuth,
|
226 |
+
distance,
|
227 |
+
device,
|
228 |
+
num_images_per_prompt,
|
229 |
+
do_classifier_free_guidance,
|
230 |
+
clip_image_embeddings=None,
|
231 |
+
image_camera_embeddings=None,
|
232 |
+
):
|
233 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
234 |
+
|
235 |
+
if image_camera_embeddings is None:
|
236 |
+
if image is None:
|
237 |
+
assert clip_image_embeddings is not None
|
238 |
+
image_embeddings = clip_image_embeddings.to(device=device, dtype=dtype)
|
239 |
+
else:
|
240 |
+
if not isinstance(image, torch.Tensor):
|
241 |
+
image = self.feature_extractor(
|
242 |
+
images=image, return_tensors="pt"
|
243 |
+
).pixel_values
|
244 |
+
|
245 |
+
image = image.to(device=device, dtype=dtype)
|
246 |
+
image_embeddings = self.image_encoder(image).image_embeds
|
247 |
+
image_embeddings = image_embeddings.unsqueeze(1)
|
248 |
+
|
249 |
+
bs_embed, seq_len, _ = image_embeddings.shape
|
250 |
+
|
251 |
+
if isinstance(elevation, float):
|
252 |
+
elevation = torch.as_tensor(
|
253 |
+
[elevation] * bs_embed, dtype=dtype, device=device
|
254 |
+
)
|
255 |
+
if isinstance(azimuth, float):
|
256 |
+
azimuth = torch.as_tensor(
|
257 |
+
[azimuth] * bs_embed, dtype=dtype, device=device
|
258 |
+
)
|
259 |
+
if isinstance(distance, float):
|
260 |
+
distance = torch.as_tensor(
|
261 |
+
[distance] * bs_embed, dtype=dtype, device=device
|
262 |
+
)
|
263 |
+
|
264 |
+
camera_embeddings = torch.stack(
|
265 |
+
[
|
266 |
+
torch.deg2rad(elevation),
|
267 |
+
torch.sin(torch.deg2rad(azimuth)),
|
268 |
+
torch.cos(torch.deg2rad(azimuth)),
|
269 |
+
distance,
|
270 |
+
],
|
271 |
+
dim=-1,
|
272 |
+
)[:, None, :]
|
273 |
+
|
274 |
+
image_embeddings = torch.cat([image_embeddings, camera_embeddings], dim=-1)
|
275 |
+
|
276 |
+
# project (image, camera) embeddings to the same dimension as clip embeddings
|
277 |
+
image_embeddings = self.clip_camera_projection(image_embeddings)
|
278 |
+
else:
|
279 |
+
image_embeddings = image_camera_embeddings.to(device=device, dtype=dtype)
|
280 |
+
bs_embed, seq_len, _ = image_embeddings.shape
|
281 |
+
|
282 |
+
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
283 |
+
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1)
|
284 |
+
image_embeddings = image_embeddings.view(
|
285 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
286 |
+
)
|
287 |
+
|
288 |
+
if do_classifier_free_guidance:
|
289 |
+
negative_prompt_embeds = torch.zeros_like(image_embeddings)
|
290 |
+
|
291 |
+
# For classifier free guidance, we need to do two forward passes.
|
292 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
293 |
+
# to avoid doing two forward passes
|
294 |
+
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])
|
295 |
+
|
296 |
+
return image_embeddings
|
297 |
+
|
298 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
299 |
+
def run_safety_checker(self, image, device, dtype):
|
300 |
+
if self.safety_checker is None:
|
301 |
+
has_nsfw_concept = None
|
302 |
+
else:
|
303 |
+
if torch.is_tensor(image):
|
304 |
+
feature_extractor_input = self.image_processor.postprocess(
|
305 |
+
image, output_type="pil"
|
306 |
+
)
|
307 |
+
else:
|
308 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
309 |
+
safety_checker_input = self.feature_extractor(
|
310 |
+
feature_extractor_input, return_tensors="pt"
|
311 |
+
).to(device)
|
312 |
+
image, has_nsfw_concept = self.safety_checker(
|
313 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
314 |
+
)
|
315 |
+
return image, has_nsfw_concept
|
316 |
+
|
317 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
318 |
+
def decode_latents(self, latents):
|
319 |
+
warnings.warn(
|
320 |
+
"The decode_latents method is deprecated and will be removed in a future version. Please"
|
321 |
+
" use VaeImageProcessor instead",
|
322 |
+
FutureWarning,
|
323 |
+
)
|
324 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
325 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
326 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
327 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
328 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
329 |
+
return image
|
330 |
+
|
331 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
332 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
333 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
334 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
335 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
336 |
+
# and should be between [0, 1]
|
337 |
+
|
338 |
+
accepts_eta = "eta" in set(
|
339 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
340 |
+
)
|
341 |
+
extra_step_kwargs = {}
|
342 |
+
if accepts_eta:
|
343 |
+
extra_step_kwargs["eta"] = eta
|
344 |
+
|
345 |
+
# check if the scheduler accepts generator
|
346 |
+
accepts_generator = "generator" in set(
|
347 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
348 |
+
)
|
349 |
+
if accepts_generator:
|
350 |
+
extra_step_kwargs["generator"] = generator
|
351 |
+
return extra_step_kwargs
|
352 |
+
|
353 |
+
def check_inputs(self, image, height, width, callback_steps):
|
354 |
+
# TODO: check image size or adjust image size to (height, width)
|
355 |
+
|
356 |
+
if height % 8 != 0 or width % 8 != 0:
|
357 |
+
raise ValueError(
|
358 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
359 |
+
)
|
360 |
+
|
361 |
+
if (callback_steps is None) or (
|
362 |
+
callback_steps is not None
|
363 |
+
and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
364 |
+
):
|
365 |
+
raise ValueError(
|
366 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
367 |
+
f" {type(callback_steps)}."
|
368 |
+
)
|
369 |
+
|
370 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
371 |
+
def prepare_latents(
|
372 |
+
self,
|
373 |
+
batch_size,
|
374 |
+
num_channels_latents,
|
375 |
+
height,
|
376 |
+
width,
|
377 |
+
dtype,
|
378 |
+
device,
|
379 |
+
generator,
|
380 |
+
latents=None,
|
381 |
+
):
|
382 |
+
shape = (
|
383 |
+
batch_size,
|
384 |
+
num_channels_latents,
|
385 |
+
height // self.vae_scale_factor,
|
386 |
+
width // self.vae_scale_factor,
|
387 |
+
)
|
388 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
389 |
+
raise ValueError(
|
390 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
391 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
392 |
+
)
|
393 |
+
|
394 |
+
if latents is None:
|
395 |
+
latents = randn_tensor(
|
396 |
+
shape, generator=generator, device=device, dtype=dtype
|
397 |
+
)
|
398 |
+
else:
|
399 |
+
latents = latents.to(device)
|
400 |
+
|
401 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
402 |
+
latents = latents * self.scheduler.init_noise_sigma
|
403 |
+
return latents
|
404 |
+
|
405 |
+
def _get_latent_model_input(
|
406 |
+
self,
|
407 |
+
latents: torch.FloatTensor,
|
408 |
+
image: Optional[
|
409 |
+
Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor]
|
410 |
+
],
|
411 |
+
num_images_per_prompt: int,
|
412 |
+
do_classifier_free_guidance: bool,
|
413 |
+
image_latents: Optional[torch.FloatTensor] = None,
|
414 |
+
):
|
415 |
+
if isinstance(image, PIL.Image.Image):
|
416 |
+
image_pt = TF.to_tensor(image).unsqueeze(0).to(latents)
|
417 |
+
elif isinstance(image, list):
|
418 |
+
image_pt = torch.stack([TF.to_tensor(img) for img in image], dim=0).to(
|
419 |
+
latents
|
420 |
+
)
|
421 |
+
elif isinstance(image, torch.Tensor):
|
422 |
+
image_pt = image
|
423 |
+
else:
|
424 |
+
image_pt = None
|
425 |
+
|
426 |
+
if image_pt is None:
|
427 |
+
assert image_latents is not None
|
428 |
+
image_pt = image_latents.repeat_interleave(num_images_per_prompt, dim=0)
|
429 |
+
else:
|
430 |
+
image_pt = image_pt * 2.0 - 1.0 # scale to [-1, 1]
|
431 |
+
# FIXME: encoded latents should be multiplied with self.vae.config.scaling_factor
|
432 |
+
# but zero123 was not trained this way
|
433 |
+
image_pt = self.vae.encode(image_pt).latent_dist.mode()
|
434 |
+
image_pt = image_pt.repeat_interleave(num_images_per_prompt, dim=0)
|
435 |
+
if do_classifier_free_guidance:
|
436 |
+
latent_model_input = torch.cat(
|
437 |
+
[
|
438 |
+
torch.cat([latents, latents], dim=0),
|
439 |
+
torch.cat([torch.zeros_like(image_pt), image_pt], dim=0),
|
440 |
+
],
|
441 |
+
dim=1,
|
442 |
+
)
|
443 |
+
else:
|
444 |
+
latent_model_input = torch.cat([latents, image_pt], dim=1)
|
445 |
+
|
446 |
+
return latent_model_input
|
447 |
+
|
448 |
+
@torch.no_grad()
|
449 |
+
def __call__(
|
450 |
+
self,
|
451 |
+
image: Optional[
|
452 |
+
Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor]
|
453 |
+
] = None,
|
454 |
+
elevation: Optional[Union[float, torch.FloatTensor]] = None,
|
455 |
+
azimuth: Optional[Union[float, torch.FloatTensor]] = None,
|
456 |
+
distance: Optional[Union[float, torch.FloatTensor]] = None,
|
457 |
+
height: Optional[int] = None,
|
458 |
+
width: Optional[int] = None,
|
459 |
+
num_inference_steps: int = 50,
|
460 |
+
guidance_scale: float = 3.0,
|
461 |
+
num_images_per_prompt: int = 1,
|
462 |
+
eta: float = 0.0,
|
463 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
464 |
+
latents: Optional[torch.FloatTensor] = None,
|
465 |
+
clip_image_embeddings: Optional[torch.FloatTensor] = None,
|
466 |
+
image_camera_embeddings: Optional[torch.FloatTensor] = None,
|
467 |
+
image_latents: Optional[torch.FloatTensor] = None,
|
468 |
+
output_type: Optional[str] = "pil",
|
469 |
+
return_dict: bool = True,
|
470 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
471 |
+
callback_steps: int = 1,
|
472 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
473 |
+
):
|
474 |
+
r"""
|
475 |
+
Function invoked when calling the pipeline for generation.
|
476 |
+
|
477 |
+
Args:
|
478 |
+
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
|
479 |
+
The image or images to guide the image generation. If you provide a tensor, it needs to comply with the
|
480 |
+
configuration of
|
481 |
+
[this](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json)
|
482 |
+
`CLIPImageProcessor`
|
483 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
484 |
+
The height in pixels of the generated image.
|
485 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
486 |
+
The width in pixels of the generated image.
|
487 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
488 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
489 |
+
expense of slower inference.
|
490 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
491 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
492 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
493 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
494 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
495 |
+
usually at the expense of lower image quality.
|
496 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
497 |
+
The number of images to generate per prompt.
|
498 |
+
eta (`float`, *optional*, defaults to 0.0):
|
499 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
500 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
501 |
+
generator (`torch.Generator`, *optional*):
|
502 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
503 |
+
to make generation deterministic.
|
504 |
+
latents (`torch.FloatTensor`, *optional*):
|
505 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
506 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
507 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
508 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
509 |
+
The output format of the generate image. Choose between
|
510 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
511 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
512 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
513 |
+
plain tuple.
|
514 |
+
callback (`Callable`, *optional*):
|
515 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
516 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
517 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
518 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
519 |
+
called at every step.
|
520 |
+
|
521 |
+
Returns:
|
522 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
523 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
524 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
525 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
526 |
+
(nsfw) content, according to the `safety_checker`.
|
527 |
+
"""
|
528 |
+
# 0. Default height and width to unet
|
529 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
530 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
531 |
+
|
532 |
+
# 1. Check inputs. Raise error if not correct
|
533 |
+
# TODO: check input elevation, azimuth, and distance
|
534 |
+
# TODO: check image, clip_image_embeddings, image_latents
|
535 |
+
self.check_inputs(image, height, width, callback_steps)
|
536 |
+
|
537 |
+
# 2. Define call parameters
|
538 |
+
if isinstance(image, PIL.Image.Image):
|
539 |
+
batch_size = 1
|
540 |
+
elif isinstance(image, list):
|
541 |
+
batch_size = len(image)
|
542 |
+
elif isinstance(image, torch.Tensor):
|
543 |
+
batch_size = image.shape[0]
|
544 |
+
else:
|
545 |
+
assert image_latents is not None
|
546 |
+
assert (
|
547 |
+
clip_image_embeddings is not None or image_camera_embeddings is not None
|
548 |
+
)
|
549 |
+
batch_size = image_latents.shape[0]
|
550 |
+
|
551 |
+
device = self._execution_device
|
552 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
553 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
554 |
+
# corresponds to doing no classifier free guidance.
|
555 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
556 |
+
|
557 |
+
# 3. Encode input image
|
558 |
+
if isinstance(image, PIL.Image.Image) or isinstance(image, list):
|
559 |
+
pil_image = image
|
560 |
+
elif isinstance(image, torch.Tensor):
|
561 |
+
pil_image = [TF.to_pil_image(image[i]) for i in range(image.shape[0])]
|
562 |
+
else:
|
563 |
+
pil_image = None
|
564 |
+
image_embeddings = self._encode_image(
|
565 |
+
pil_image,
|
566 |
+
elevation,
|
567 |
+
azimuth,
|
568 |
+
distance,
|
569 |
+
device,
|
570 |
+
num_images_per_prompt,
|
571 |
+
do_classifier_free_guidance,
|
572 |
+
clip_image_embeddings,
|
573 |
+
image_camera_embeddings,
|
574 |
+
)
|
575 |
+
|
576 |
+
# 4. Prepare timesteps
|
577 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
578 |
+
timesteps = self.scheduler.timesteps
|
579 |
+
|
580 |
+
# 5. Prepare latent variables
|
581 |
+
# num_channels_latents = self.unet.config.in_channels
|
582 |
+
num_channels_latents = 4 # FIXME: hard-coded
|
583 |
+
latents = self.prepare_latents(
|
584 |
+
batch_size * num_images_per_prompt,
|
585 |
+
num_channels_latents,
|
586 |
+
height,
|
587 |
+
width,
|
588 |
+
image_embeddings.dtype,
|
589 |
+
device,
|
590 |
+
generator,
|
591 |
+
latents,
|
592 |
+
)
|
593 |
+
|
594 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
595 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
596 |
+
|
597 |
+
# 7. Denoising loop
|
598 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
599 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
600 |
+
for i, t in enumerate(timesteps):
|
601 |
+
# expand the latents if we are doing classifier free guidance
|
602 |
+
latent_model_input = self._get_latent_model_input(
|
603 |
+
latents,
|
604 |
+
image,
|
605 |
+
num_images_per_prompt,
|
606 |
+
do_classifier_free_guidance,
|
607 |
+
image_latents,
|
608 |
+
)
|
609 |
+
latent_model_input = self.scheduler.scale_model_input(
|
610 |
+
latent_model_input, t
|
611 |
+
)
|
612 |
+
|
613 |
+
# predict the noise residual
|
614 |
+
noise_pred = self.unet(
|
615 |
+
latent_model_input,
|
616 |
+
t,
|
617 |
+
encoder_hidden_states=image_embeddings,
|
618 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
619 |
+
).sample
|
620 |
+
|
621 |
+
# perform guidance
|
622 |
+
if do_classifier_free_guidance:
|
623 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
624 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
625 |
+
noise_pred_text - noise_pred_uncond
|
626 |
+
)
|
627 |
+
|
628 |
+
# compute the previous noisy sample x_t -> x_t-1
|
629 |
+
latents = self.scheduler.step(
|
630 |
+
noise_pred, t, latents, **extra_step_kwargs
|
631 |
+
).prev_sample
|
632 |
+
|
633 |
+
# call the callback, if provided
|
634 |
+
if i == len(timesteps) - 1 or (
|
635 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
636 |
+
):
|
637 |
+
progress_bar.update()
|
638 |
+
if callback is not None and i % callback_steps == 0:
|
639 |
+
callback(i, t, latents)
|
640 |
+
|
641 |
+
if not output_type == "latent":
|
642 |
+
image = self.vae.decode(
|
643 |
+
latents / self.vae.config.scaling_factor, return_dict=False
|
644 |
+
)[0]
|
645 |
+
image, has_nsfw_concept = self.run_safety_checker(
|
646 |
+
image, device, image_embeddings.dtype
|
647 |
+
)
|
648 |
+
else:
|
649 |
+
image = latents
|
650 |
+
has_nsfw_concept = None
|
651 |
+
|
652 |
+
if has_nsfw_concept is None:
|
653 |
+
do_denormalize = [True] * image.shape[0]
|
654 |
+
else:
|
655 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
656 |
+
|
657 |
+
image = self.image_processor.postprocess(
|
658 |
+
image, output_type=output_type, do_denormalize=do_denormalize
|
659 |
+
)
|
660 |
+
|
661 |
+
if not return_dict:
|
662 |
+
return (image, has_nsfw_concept)
|
663 |
+
|
664 |
+
return StableDiffusionPipelineOutput(
|
665 |
+
images=image, nsfw_content_detected=has_nsfw_concept
|
666 |
+
)
|