MarieAngeA13 commited on
Commit
724d79b
1 Parent(s): 3d91c59

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -2
app.py CHANGED
@@ -1,8 +1,11 @@
1
  import streamlit as st
2
  from transformers import pipeline
3
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
 
 
4
  # Load the sentiment analysis model from our BERT model
5
- classifier = pipeline("text-classification", model = "MarieAngeA13/Sentiment-Analysis-BERT")
 
6
 
7
  # Create a Streamlit app
8
  st.title('Sentiment Analysis with BERT')
@@ -14,8 +17,16 @@ text_input = st.text_input('Enter text here')
14
 
15
  # When the user submits text, run the sentiment analysis model on it
16
  if st.button('Submit'):
 
 
 
 
 
 
 
 
17
  # Predict the sentiment of the text using our own BERT model
18
- output = classifier(text_input)
19
 
20
  best_prediction = output[0]
21
  sentiment = best_prediction['label']
 
1
  import streamlit as st
2
  from transformers import pipeline
3
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
4
+ from googletrans import Translator
5
+
6
  # Load the sentiment analysis model from our BERT model
7
+ classifier = pipeline("text-classification", model="MarieAngeA13/Sentiment-Analysis-BERT")
8
+ translator = Translator()
9
 
10
  # Create a Streamlit app
11
  st.title('Sentiment Analysis with BERT')
 
17
 
18
  # When the user submits text, run the sentiment analysis model on it
19
  if st.button('Submit'):
20
+ # Translate the text if the detected language is French
21
+ detected_language = translator.detect(text_input).lang
22
+ if detected_language == 'fr':
23
+ translation = translator.translate(text_input, src='fr', dest='en')
24
+ translated_text = translation.text
25
+ else:
26
+ translated_text = text_input
27
+
28
  # Predict the sentiment of the text using our own BERT model
29
+ output = classifier(translated_text)
30
 
31
  best_prediction = output[0]
32
  sentiment = best_prediction['label']