# flake8: noqa: E402 import sys, os import logging logging.getLogger("numba").setLevel(logging.WARNING) logging.getLogger("markdown_it").setLevel(logging.WARNING) logging.getLogger("urllib3").setLevel(logging.WARNING) logging.getLogger("matplotlib").setLevel(logging.WARNING) logging.basicConfig( level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s" ) logger = logging.getLogger(__name__) import datetime import numpy as np import torch import argparse import commons import utils from models import SynthesizerTrn from text.symbols import symbols from text import cleaned_text_to_sequence, get_bert from text.cleaner import clean_text import gradio as gr import webbrowser import re net_g = None BandList = { "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"], "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"], "HelloHappyWorld":["こころ","ミッシェル","薫","花音","はぐみ"], "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"], "Roselia":["友希那","紗夜","リサ","燐子","あこ"], "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"], "Morfonica":["ましろ","瑠唯","つくし","七深","透子"], "MyGo":["燈","愛音","そよ","立希","楽奈"], "AveMujica(初华和喵梦没法用)":["祥子","睦","海鈴","初華","にゃむ"], } if sys.platform == "darwin" and torch.backends.mps.is_available(): device = "mps" os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" else: device = "cuda" def is_japanese(string): for ch in string: if ord(ch) > 0x3040 and ord(ch) < 0x30FF: return True return False def extrac(text): text = re.sub("<[^>]*>","",text) result_list = re.split(r'\n', text) final_list = [] for i in result_list: i = i.replace('\n','').replace(' ','') #Current length of single sentence: 20 if len(i)>1: if len(i) > 20: try: cur_list = re.split(r'。|!', i) for i in cur_list: if len(i)>1: final_list.append(i+'。') except: pass else: final_list.append(i) ''' final_list.append(i) ''' final_list = [x for x in final_list if x != ''] print(final_list) return final_list def get_text(text, language_str, hps): norm_text, phone, tone, word2ph = clean_text(text, language_str) phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) if hps.data.add_blank: phone = commons.intersperse(phone, 0) tone = commons.intersperse(tone, 0) language = commons.intersperse(language, 0) for i in range(len(word2ph)): word2ph[i] = word2ph[i] * 2 word2ph[0] += 1 bert = get_bert(norm_text, word2ph, language_str, device) del word2ph assert bert.shape[-1] == len(phone), phone if language_str == "ZH": bert = bert ja_bert = torch.zeros(768, len(phone)) elif language_str == "JA": ja_bert = bert bert = torch.zeros(1024, len(phone)) else: bert = torch.zeros(1024, len(phone)) ja_bert = torch.zeros(768, len(phone)) assert bert.shape[-1] == len( phone ), f"Bert seq len {bert.shape[-1]} != {len(phone)}" phone = torch.LongTensor(phone) tone = torch.LongTensor(tone) language = torch.LongTensor(language) return bert, ja_bert, phone, tone, language def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language): global net_g bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps) with torch.no_grad(): x_tst = phones.to(device).unsqueeze(0) tones = tones.to(device).unsqueeze(0) lang_ids = lang_ids.to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) ja_bert = ja_bert.to(device).unsqueeze(0) x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) del phones speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) audio = ( net_g.infer( x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, ja_bert, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, )[0][0, 0] .data.cpu() .float() .numpy() ) del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers return audio def tts_fn( text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,LongSentence ): if not LongSentence: with torch.no_grad(): audio = infer( text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker, language= "JP" if is_japanese(text) else "ZH", ) torch.cuda.empty_cache() return (hps.data.sampling_rate, audio) else: audiopath = 'voice.wav' a = ['【','[','(','('] b = ['】',']',')',')'] for i in a: text = text.replace(i,'<') for i in b: text = text.replace(i,'>') final_list = extrac(text.replace('“','').replace('”','')) audio_fin = [] for sentence in final_list: with torch.no_grad(): audio = infer( sentence, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker, language= "JP" if is_japanese(text) else "ZH", ) print(sentence) audio_fin.append(audio) return (hps.data.sampling_rate, np.concatenate(audio_fin)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-m", "--model", default="./logs/BangDream/G_17000.pth", help="path of your model" ) parser.add_argument( "-c", "--config", default="./logs/BangDream/config.json", help="path of your config file", ) parser.add_argument( "--share", default=True, help="make link public", action="store_true" ) parser.add_argument( "-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log" ) args = parser.parse_args() if args.debug: logger.info("Enable DEBUG-LEVEL log") logging.basicConfig(level=logging.DEBUG) hps = utils.get_hparams_from_file(args.config) device = ( "cuda:0" if torch.cuda.is_available() else ( "mps" if sys.platform == "darwin" and torch.backends.mps.is_available() else "cpu" ) ) net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model, ).to(device) _ = net_g.eval() _ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True) speaker_ids = hps.data.spk2id speakers = list(speaker_ids.keys()) languages = ["ZH", "JP"] with gr.Blocks() as app: for band in BandList: with gr.TabItem(band): for name in BandList[band]: with gr.TabItem(name): with gr.Row(): with gr.Column(): with gr.Row(): gr.Markdown( '