Spaces:
Runtime error
Runtime error
File size: 5,506 Bytes
fa2034d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import streamlit as st
from utils.config import document_store_configs, model_configs
from haystack import Pipeline
from haystack.schema import Answer
from haystack.document_stores import BaseDocumentStore
from haystack.document_stores import InMemoryDocumentStore, OpenSearchDocumentStore, WeaviateDocumentStore
from haystack.nodes import EmbeddingRetriever, FARMReader, PromptNode, PreProcessor
#from haystack.nodes import TextConverter, FileTypeClassifier, PDFToTextConverter
from milvus_haystack import MilvusDocumentStore
#Use this file to set up your Haystack pipeline and querying
@st.cache_resource(show_spinner=False)
def start_preprocessor_node():
print('initializing preprocessor node')
processor = PreProcessor(
clean_empty_lines= True,
clean_whitespace=True,
clean_header_footer=True,
#remove_substrings=None,
split_by="word",
split_length=100,
split_respect_sentence_boundary=True,
#split_overlap=0,
#max_chars_check= 10_000
)
return processor
#return docs
@st.cache_resource(show_spinner=False)
def start_document_store(type: str):
#This function starts the documents store of your choice based on your command line preference
print('initializing document store')
if type == 'inmemory':
document_store = InMemoryDocumentStore(use_bm25=True, embedding_dim=384)
'''
documents = [
{
'content': "Pi is a super dog",
'meta': {'name': "pi.txt"}
},
{
'content': "The revenue of siemens is 5 milion Euro",
'meta': {'name': "siemens.txt"}
},
]
document_store.write_documents(documents)
'''
elif type == 'opensearch':
document_store = OpenSearchDocumentStore(scheme = document_store_configs['OPENSEARCH_SCHEME'],
username = document_store_configs['OPENSEARCH_USERNAME'],
password = document_store_configs['OPENSEARCH_PASSWORD'],
host = document_store_configs['OPENSEARCH_HOST'],
port = document_store_configs['OPENSEARCH_PORT'],
index = document_store_configs['OPENSEARCH_INDEX'],
embedding_dim = document_store_configs['OPENSEARCH_EMBEDDING_DIM'])
elif type == 'weaviate':
document_store = WeaviateDocumentStore(host = document_store_configs['WEAVIATE_HOST'],
port = document_store_configs['WEAVIATE_PORT'],
index = document_store_configs['WEAVIATE_INDEX'],
embedding_dim = document_store_configs['WEAVIATE_EMBEDDING_DIM'])
elif type == 'milvus':
document_store = MilvusDocumentStore(uri = document_store_configs['MILVUS_URI'],
index = document_store_configs['MILVUS_INDEX'],
embedding_dim = document_store_configs['MILVUS_EMBEDDING_DIM'],
return_embedding=True)
return document_store
# cached to make index and models load only at start
@st.cache_resource(show_spinner=False)
def start_retriever(_document_store: BaseDocumentStore):
print('initializing retriever')
retriever = EmbeddingRetriever(document_store=_document_store,
embedding_model=model_configs['EMBEDDING_MODEL'],
top_k=5)
#
#_document_store.update_embeddings(retriever)
return retriever
@st.cache_resource(show_spinner=False)
def start_reader():
print('initializing reader')
reader = FARMReader(model_name_or_path=model_configs['EXTRACTIVE_MODEL'])
return reader
# cached to make index and models load only at start
@st.cache_resource(show_spinner=False)
def start_haystack_extractive(_document_store: BaseDocumentStore, _retriever: EmbeddingRetriever, _reader: FARMReader):
print('initializing pipeline')
pipe = Pipeline()
pipe.add_node(component=_retriever, name="Retriever", inputs=["Query"])
pipe.add_node(component= _reader, name="Reader", inputs=["Retriever"])
return pipe
@st.cache_resource(show_spinner=False)
def start_haystack_rag(_document_store: BaseDocumentStore, _retriever: EmbeddingRetriever, openai_key):
prompt_node = PromptNode(default_prompt_template="deepset/question-answering",
model_name_or_path=model_configs['GENERATIVE_MODEL'],
api_key=openai_key,
max_length=500)
pipe = Pipeline()
pipe.add_node(component=_retriever, name="Retriever", inputs=["Query"])
pipe.add_node(component=prompt_node, name="PromptNode", inputs=["Retriever"])
return pipe
#@st.cache_data(show_spinner=True)
def query(_pipeline, question):
params = {}
results = _pipeline.run(question, params=params)
return results
def initialize_pipeline(task, document_store, retriever, reader, openai_key = ""):
if task == 'extractive':
return start_haystack_extractive(document_store, retriever, reader)
elif task == 'rag':
return start_haystack_rag(document_store, retriever, openai_key)
|