Spaces:
Running
Running
add dataset generation script
Browse files- .gitignore +6 -0
- README.md +3 -3
- env_consts.py +1 -1
- prepare_pinder_dataset.py +622 -0
- resources/{77-182500_only_weights.ckpt → only_weights_102-240750.ckpt} +2 -2
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ignore __pycache__ folders
|
2 |
+
__pycache__/
|
3 |
+
.idea/
|
4 |
+
|
5 |
+
# Ignore .DS_Store files
|
6 |
+
.DS_Store
|
README.md
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: indigo
|
5 |
colorTo: indigo
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
-
license:
|
9 |
---
|
10 |
|
11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: DockFormerPP
|
3 |
+
emoji: ⚡
|
4 |
colorFrom: indigo
|
5 |
colorTo: indigo
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
+
license: apache-2.0
|
9 |
---
|
10 |
|
11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
env_consts.py
CHANGED
@@ -3,7 +3,7 @@ import os
|
|
3 |
TEST_INPUT_DIR = None
|
4 |
TEST_OUTPUT_DIR = None
|
5 |
THIS_FILE_DIR = os.path.dirname(os.path.abspath(__file__))
|
6 |
-
CKPT_PATH = os.path.join(THIS_FILE_DIR, "resources", "
|
7 |
RUN_CONFIG_PATH = os.path.join(THIS_FILE_DIR, "resources", "run_config.json")
|
8 |
|
9 |
OUTPUT_PATH = os.path.join(THIS_FILE_DIR, "predicted_out.pdb")
|
|
|
3 |
TEST_INPUT_DIR = None
|
4 |
TEST_OUTPUT_DIR = None
|
5 |
THIS_FILE_DIR = os.path.dirname(os.path.abspath(__file__))
|
6 |
+
CKPT_PATH = os.path.join(THIS_FILE_DIR, "resources", "only_weights_102-240750.ckpt")
|
7 |
RUN_CONFIG_PATH = os.path.join(THIS_FILE_DIR, "resources", "run_config.json")
|
8 |
|
9 |
OUTPUT_PATH = os.path.join(THIS_FILE_DIR, "predicted_out.pdb")
|
prepare_pinder_dataset.py
ADDED
@@ -0,0 +1,622 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import random
|
5 |
+
import sys
|
6 |
+
from typing import List, Tuple, Optional
|
7 |
+
|
8 |
+
import Bio.PDB
|
9 |
+
import Bio.SeqUtils
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
OUTPUT_FOLDER = "/tmp/output"
|
16 |
+
PINDER_ANNOTATIONS = "/tmp/index.parquet"
|
17 |
+
GSUTIL_PATH = "/tmp/google-cloud-sdk/bin/gsutil"
|
18 |
+
|
19 |
+
|
20 |
+
MAX_SYSTEMS_FOR_CLUSTER = 2
|
21 |
+
MAX_LENGTH = 350
|
22 |
+
MAX_TRIES_OF_METHOD = 5
|
23 |
+
|
24 |
+
|
25 |
+
def do_robust_chain_object_renumber(chain: Bio.PDB.Chain.Chain, new_chain_id: str) -> Optional[Bio.PDB.Chain.Chain]:
|
26 |
+
all_residues = [res for res in chain.get_residues()
|
27 |
+
if "CA" in res and Bio.SeqUtils.seq1(res.get_resname()) not in ("X", "", " ")]
|
28 |
+
if not all_residues:
|
29 |
+
return None
|
30 |
+
|
31 |
+
res_and_res_id = [(res, res.get_id()[1]) for res in all_residues]
|
32 |
+
|
33 |
+
min_res_id = min([i[1] for i in res_and_res_id])
|
34 |
+
if min_res_id < 1:
|
35 |
+
print("Negative res id", chain, min_res_id)
|
36 |
+
factor = -1 * min_res_id + 1
|
37 |
+
res_and_res_id = [(res, res_id + factor) for res, res_id in res_and_res_id]
|
38 |
+
|
39 |
+
res_and_res_id_no_collisions = []
|
40 |
+
for res, res_id in res_and_res_id[::-1]:
|
41 |
+
if res_and_res_id_no_collisions and res_and_res_id_no_collisions[-1][1] == res_id:
|
42 |
+
# there is a collision, usually an insertion residue
|
43 |
+
res_and_res_id_no_collisions = [(i, j + 1) for i, j in res_and_res_id_no_collisions]
|
44 |
+
res_and_res_id_no_collisions.append((res, res_id))
|
45 |
+
|
46 |
+
first_res_id = min([i[1] for i in res_and_res_id_no_collisions])
|
47 |
+
factor = 1 - first_res_id # start from 1
|
48 |
+
new_chain = Bio.PDB.Chain.Chain(new_chain_id)
|
49 |
+
|
50 |
+
res_and_res_id_no_collisions.sort(key=lambda x: x[1])
|
51 |
+
|
52 |
+
for res, res_id in res_and_res_id_no_collisions:
|
53 |
+
chain.detach_child(res.id)
|
54 |
+
res.id = (" ", res_id + factor, " ")
|
55 |
+
new_chain.add(res)
|
56 |
+
|
57 |
+
return new_chain
|
58 |
+
|
59 |
+
|
60 |
+
def robust_renumber_protein(pdb_path: str, output_path: str):
|
61 |
+
if pdb_path.endswith(".pdb"):
|
62 |
+
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
|
63 |
+
pdb_struct = pdb_parser.get_structure("original_pdb", pdb_path)
|
64 |
+
elif pdb_path.endswith(".cif"):
|
65 |
+
pdb_struct = Bio.PDB.MMCIFParser().get_structure("original_pdb", pdb_path)
|
66 |
+
else:
|
67 |
+
raise ValueError("Unknown file type", pdb_path)
|
68 |
+
assert len(list(pdb_struct)) == 1, "can't extract if more than one model"
|
69 |
+
model = next(iter(pdb_struct))
|
70 |
+
chains = list(model.get_chains())
|
71 |
+
new_model = Bio.PDB.Model.Model(0)
|
72 |
+
chain_ids = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
|
73 |
+
for chain, chain_id in zip(chains, chain_ids):
|
74 |
+
new_chain = do_robust_chain_object_renumber(chain, chain_id)
|
75 |
+
if new_chain is None:
|
76 |
+
continue
|
77 |
+
new_model.add(new_chain)
|
78 |
+
new_struct = Bio.PDB.Structure.Structure("renumbered_pdb")
|
79 |
+
new_struct.add(new_model)
|
80 |
+
io = Bio.PDB.PDBIO()
|
81 |
+
io.set_structure(new_struct)
|
82 |
+
io.save(output_path)
|
83 |
+
|
84 |
+
|
85 |
+
def get_chain_object_to_seq(chain: Bio.PDB.Chain.Chain) -> str:
|
86 |
+
res_id_to_res = {res.get_id()[1]: res for res in chain.get_residues() if "CA" in res}
|
87 |
+
|
88 |
+
if len(res_id_to_res) == 0:
|
89 |
+
print("skipping empty chain", chain.get_id())
|
90 |
+
return ""
|
91 |
+
seq = ""
|
92 |
+
for i in range(1, max(res_id_to_res) + 1):
|
93 |
+
if i in res_id_to_res:
|
94 |
+
seq += Bio.SeqUtils.seq1(res_id_to_res[i].get_resname())
|
95 |
+
else:
|
96 |
+
seq += "X"
|
97 |
+
return seq
|
98 |
+
|
99 |
+
|
100 |
+
def get_sequence_from_pdb(pdb_path: str) -> Tuple[str, List[int]]:
|
101 |
+
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
|
102 |
+
pdb_struct = pdb_parser.get_structure("original_pdb", pdb_path)
|
103 |
+
# chain_to_seq = {chain.id: get_chain_object_to_seq(chain) for chain in pdb_struct.get_chains()}
|
104 |
+
all_chain_seqs = [get_chain_object_to_seq(chain) for chain in pdb_struct.get_chains()]
|
105 |
+
chain_lengths = [len(seq) for seq in all_chain_seqs]
|
106 |
+
return ("X" * 20).join(all_chain_seqs), chain_lengths
|
107 |
+
|
108 |
+
|
109 |
+
from Bio import PDB
|
110 |
+
from Bio import pairwise2
|
111 |
+
|
112 |
+
|
113 |
+
def extract_sequence(chain):
|
114 |
+
seq = ''
|
115 |
+
residues = []
|
116 |
+
for res in chain.get_residues():
|
117 |
+
seq_res = Bio.SeqUtils.seq1(res.get_resname())
|
118 |
+
if seq_res in ('X', "", " "):
|
119 |
+
continue
|
120 |
+
seq += seq_res
|
121 |
+
residues.append(res)
|
122 |
+
return seq, residues
|
123 |
+
|
124 |
+
|
125 |
+
def map_residues(alignment, residues_gt, residues_pred):
|
126 |
+
idx_gt = 0
|
127 |
+
idx_pred = 0
|
128 |
+
mapping = []
|
129 |
+
for i in range(len(alignment.seqA)):
|
130 |
+
aa_gt = alignment.seqA[i]
|
131 |
+
aa_pred = alignment.seqB[i]
|
132 |
+
res_gt = None
|
133 |
+
res_pred = None
|
134 |
+
if aa_gt != '-':
|
135 |
+
res_gt = residues_gt[idx_gt]
|
136 |
+
idx_gt += 1
|
137 |
+
if aa_pred != '-':
|
138 |
+
res_pred = residues_pred[idx_pred]
|
139 |
+
idx_pred += 1
|
140 |
+
if res_gt and res_pred:
|
141 |
+
mapping.append((res_gt, res_pred))
|
142 |
+
return mapping
|
143 |
+
|
144 |
+
|
145 |
+
class ResidueSelect(PDB.Select):
|
146 |
+
def __init__(self, residues_to_select):
|
147 |
+
self.residues_to_select = set(residues_to_select)
|
148 |
+
|
149 |
+
def accept_residue(self, residue):
|
150 |
+
return residue in self.residues_to_select
|
151 |
+
|
152 |
+
|
153 |
+
def count_gapped_single_aa(alignment):
|
154 |
+
count_non_gap = 0
|
155 |
+
count_fully_gapped = 0
|
156 |
+
for i in range(1, len(alignment.seqA) - 1):
|
157 |
+
if alignment.seqA[i] != '-':
|
158 |
+
count_non_gap += 1
|
159 |
+
if alignment.seqA[i - 1] == '-' and alignment.seqA[i + 1] == '-':
|
160 |
+
count_fully_gapped += 1
|
161 |
+
top_ratio = count_fully_gapped / count_non_gap
|
162 |
+
|
163 |
+
count_non_gap = 0
|
164 |
+
count_fully_gapped = 0
|
165 |
+
for i in range(1, len(alignment.seqB) - 1):
|
166 |
+
if alignment.seqA[i] != '-':
|
167 |
+
count_non_gap += 1
|
168 |
+
if alignment.seqA[i - 1] == '-' and alignment.seqA[i + 1] == '-':
|
169 |
+
count_fully_gapped += 1
|
170 |
+
|
171 |
+
if count_fully_gapped / count_non_gap > top_ratio:
|
172 |
+
top_ratio = count_fully_gapped / count_non_gap
|
173 |
+
|
174 |
+
return top_ratio
|
175 |
+
|
176 |
+
|
177 |
+
def copy_residue_numbering(gt_pdb_path, input_pdb_path):
|
178 |
+
parser = PDB.PDBParser(QUIET=True)
|
179 |
+
gt_structure = parser.get_structure('gt', gt_pdb_path)
|
180 |
+
input_structure = parser.get_structure('input', input_pdb_path)
|
181 |
+
|
182 |
+
for res in list(input_structure.get_residues()):
|
183 |
+
res.id = (' ', res.get_id()[1] + 10000, ' ')
|
184 |
+
|
185 |
+
for gt_res, input_res in zip(gt_structure.get_residues(), input_structure.get_residues()):
|
186 |
+
input_res.id = gt_res.id
|
187 |
+
|
188 |
+
io = PDB.PDBIO()
|
189 |
+
io.set_structure(input_structure)
|
190 |
+
io.save(input_pdb_path)
|
191 |
+
|
192 |
+
|
193 |
+
def align_gt_and_input(gt_pdb_path, input_pdb_path, output_gt_path, output_input_path):
|
194 |
+
# print("aligning", gt_pdb_path, input_pdb_path, output_gt_path, output_input_path)
|
195 |
+
parser = PDB.PDBParser(QUIET=True)
|
196 |
+
gt_structure = parser.get_structure('gt', gt_pdb_path)
|
197 |
+
pred_structure = parser.get_structure('pred', input_pdb_path)
|
198 |
+
matched_residues_gt = []
|
199 |
+
matched_residues_pred = []
|
200 |
+
|
201 |
+
total_gt_size = len([res for res in gt_structure.get_residues() if "CA" in res])
|
202 |
+
|
203 |
+
used_chain_pred = []
|
204 |
+
total_mapping_size = 0
|
205 |
+
for chain_gt in gt_structure.get_chains():
|
206 |
+
seq_gt, residues_gt = extract_sequence(chain_gt)
|
207 |
+
best_alignment = None
|
208 |
+
best_chain_pred = None
|
209 |
+
best_score = -1
|
210 |
+
best_residues_pred = None
|
211 |
+
# Find the best matching chain in pred
|
212 |
+
for chain_pred in pred_structure.get_chains():
|
213 |
+
# print("checking", chain_pred.get_id(), chain_gt.get_id())
|
214 |
+
if chain_pred in used_chain_pred:
|
215 |
+
continue
|
216 |
+
seq_pred, residues_pred = extract_sequence(chain_pred)
|
217 |
+
# print(seq_gt)
|
218 |
+
# print(seq_pred)
|
219 |
+
# alignments = pairwise2.align.globalxx(seq_gt, seq_pred, one_alignment_only=True)
|
220 |
+
alignments = pairwise2.align.globalms(seq_gt, seq_pred, 2, -10000, -1, 0, one_alignment_only=True)
|
221 |
+
if not alignments:
|
222 |
+
continue
|
223 |
+
# print("checking2", chain_pred.get_id(), chain_gt.get_id())
|
224 |
+
|
225 |
+
alignment = alignments[0]
|
226 |
+
score = alignment.score
|
227 |
+
if score > best_score:
|
228 |
+
best_score = score
|
229 |
+
best_alignment = alignment
|
230 |
+
best_chain_pred = chain_pred
|
231 |
+
best_residues_pred = residues_pred
|
232 |
+
if best_alignment and count_gapped_single_aa(best_alignment) < 0.2:
|
233 |
+
mapping = map_residues(best_alignment, residues_gt, best_residues_pred)
|
234 |
+
total_mapping_size += len(mapping)
|
235 |
+
used_chain_pred.append(best_chain_pred)
|
236 |
+
for res_gt, res_pred in mapping:
|
237 |
+
matched_residues_gt.append(res_gt)
|
238 |
+
matched_residues_pred.append(res_pred)
|
239 |
+
else:
|
240 |
+
print(f"No matching chain found for chain {chain_gt.get_id()}")
|
241 |
+
assert total_mapping_size / total_gt_size > 0.8, \
|
242 |
+
f"Mapping size too low ({total_mapping_size}/{total_gt_size}), skipping"
|
243 |
+
print(f"Total mapping size: {total_mapping_size}")
|
244 |
+
|
245 |
+
# Write new PDB files with only matched residues
|
246 |
+
io = PDB.PDBIO()
|
247 |
+
io.set_structure(gt_structure)
|
248 |
+
io.save(output_gt_path, ResidueSelect(matched_residues_gt))
|
249 |
+
io = PDB.PDBIO()
|
250 |
+
io.set_structure(pred_structure)
|
251 |
+
io.save(output_input_path, ResidueSelect(matched_residues_pred))
|
252 |
+
|
253 |
+
copy_residue_numbering(output_gt_path, output_input_path)
|
254 |
+
|
255 |
+
|
256 |
+
def validate_matching_input_gt(gt_pdb_path, input_pdb_path):
|
257 |
+
gt_residues = [res for res in PDB.PDBParser().get_structure('gt', gt_pdb_path).get_residues()]
|
258 |
+
input_residues = [res for res in PDB.PDBParser().get_structure('input', input_pdb_path).get_residues()]
|
259 |
+
|
260 |
+
if len(gt_residues) != len(input_residues):
|
261 |
+
print(f"Residue count mismatch: {len(gt_residues)} vs {len(input_residues)}")
|
262 |
+
return -1
|
263 |
+
|
264 |
+
for res_gt, res_input in zip(gt_residues, input_residues):
|
265 |
+
if res_gt.get_resname() != res_input.get_resname():
|
266 |
+
print(f"Residue name mismatch: {res_gt.get_resname()} vs {res_input.get_resname()}")
|
267 |
+
return -1
|
268 |
+
return len(input_residues)
|
269 |
+
|
270 |
+
|
271 |
+
def download_pdb(pdb_name, output_folder):
|
272 |
+
output_path = os.path.join(output_folder, pdb_name)
|
273 |
+
if os.path.exists(output_path):
|
274 |
+
return output_path
|
275 |
+
print("downloading", pdb_name)
|
276 |
+
os.system(f'{GSUTIL_PATH} -m -q cp "gs://pinder/2024-02/pdbs/{pdb_name}" {output_path}')
|
277 |
+
return output_path
|
278 |
+
|
279 |
+
|
280 |
+
INTERFACE_MIN_ATOM_DIST = 5
|
281 |
+
|
282 |
+
|
283 |
+
def get_filtered_res(gt_r_res, gt_l_res, max_length: int):
|
284 |
+
gt_r_ca = np.array([res["CA"].coord for res in gt_r_res])
|
285 |
+
gt_l_ca = np.array([res["CA"].coord for res in gt_l_res])
|
286 |
+
|
287 |
+
if len(gt_r_res) + len(gt_l_res) < max_length:
|
288 |
+
# continue without cropping
|
289 |
+
print("no cropping needed", len(gt_r_res), len(gt_l_res))
|
290 |
+
return gt_r_res, gt_l_res
|
291 |
+
|
292 |
+
# close_residues = np.argwhere(scipy.spatial.distance.cdist(gt_r_ca, gt_l_ca) < INTERFACE_MIN_ATOM_DIST)
|
293 |
+
# gt_r_interface, gt_l_interface = set(), set()
|
294 |
+
# for i, j in close_residues:
|
295 |
+
# gt_r_interface.add(gt_r_res[i].id[1])
|
296 |
+
# gt_l_interface.add(gt_l_res[j].id[1])
|
297 |
+
|
298 |
+
inter_dists = gt_r_ca[:, np.newaxis, :] - gt_l_ca[np.newaxis, :, :]
|
299 |
+
inter_dists = np.sqrt((inter_dists ** 2).sum(-1))
|
300 |
+
min_inter_dist_per_gt_l_res = inter_dists.min(axis=0)
|
301 |
+
min_inter_dist_per_gt_r_res = inter_dists.min(axis=1)
|
302 |
+
|
303 |
+
assert min_inter_dist_per_gt_l_res.shape[0] == len(gt_l_res)
|
304 |
+
assert min_inter_dist_per_gt_r_res.shape[0] == len(gt_r_res)
|
305 |
+
|
306 |
+
min_r_res, max_r_res = min(min_inter_dist_per_gt_r_res), max(min_inter_dist_per_gt_r_res)
|
307 |
+
min_l_res, max_l_res = min(min_inter_dist_per_gt_l_res), max(min_inter_dist_per_gt_l_res)
|
308 |
+
|
309 |
+
r_pocket = [res for res in gt_r_res if min_r_res <= res.id[1] <= max_r_res]
|
310 |
+
l_pocket = [res for res in gt_l_res if min_l_res <= res.id[1] <= max_l_res]
|
311 |
+
|
312 |
+
if len(r_pocket) + len(l_pocket) < max_length:
|
313 |
+
# add extra residues to both chains to get a total of max_length
|
314 |
+
res_r_before = [res for res in gt_r_res if res.id[1] < min_r_res]
|
315 |
+
res_r_after = [res for res in gt_r_res if res.id[1] > max_r_res]
|
316 |
+
res_l_before = [res for res in gt_l_res if res.id[1] < min_l_res]
|
317 |
+
res_l_after = [res for res in gt_l_res if res.id[1] > max_l_res]
|
318 |
+
|
319 |
+
extra_to_add = max_length - len(r_pocket) - len(l_pocket)
|
320 |
+
|
321 |
+
actions = []
|
322 |
+
if len(res_r_before) > 0:
|
323 |
+
actions.append("add_r_before")
|
324 |
+
if len(res_r_after) > 0:
|
325 |
+
actions.append("add_r_after")
|
326 |
+
if len(res_l_before) > 0:
|
327 |
+
actions.append("add_l_before")
|
328 |
+
if len(res_l_after) > 0:
|
329 |
+
actions.append("add_l_after")
|
330 |
+
while extra_to_add > 0 and actions:
|
331 |
+
action = random.choice(actions)
|
332 |
+
|
333 |
+
if action == "add_r_before":
|
334 |
+
r_pocket.insert(0, res_r_before.pop())
|
335 |
+
if not len(res_r_before):
|
336 |
+
actions.remove("add_r_before")
|
337 |
+
elif action == "add_r_after":
|
338 |
+
r_pocket.append(res_r_after.pop())
|
339 |
+
if not len(res_r_after):
|
340 |
+
actions.remove("add_r_after")
|
341 |
+
elif action == "add_l_before":
|
342 |
+
l_pocket.insert(0, res_l_before.pop())
|
343 |
+
if not len(res_l_before):
|
344 |
+
actions.remove("add_l_before")
|
345 |
+
elif action == "add_l_after":
|
346 |
+
l_pocket.append(res_l_after.pop())
|
347 |
+
if not len(res_l_after):
|
348 |
+
actions.remove("add_l_after")
|
349 |
+
extra_to_add -= 1
|
350 |
+
print("Extended pocket sizes", len(r_pocket), len(l_pocket), "extra_to_add", extra_to_add)
|
351 |
+
return r_pocket, l_pocket
|
352 |
+
|
353 |
+
print("cropping simply")
|
354 |
+
# remove residues that are farthest from the interface
|
355 |
+
res_and_dist_r = [(res, min_inter_dist_per_gt_r_res[res_idx]) for res_idx, res in enumerate(gt_r_res)]
|
356 |
+
res_and_dist_l = [(res, min_inter_dist_per_gt_l_res[res_idx]) for res_idx, res in enumerate(gt_l_res)]
|
357 |
+
|
358 |
+
res_and_dist_r = [(res, dist) for res, dist in res_and_dist_r if res in r_pocket]
|
359 |
+
res_and_dist_l = [(res, dist) for res, dist in res_and_dist_l if res in l_pocket]
|
360 |
+
|
361 |
+
res_and_dist_r = sorted(res_and_dist_r, key=lambda x: x[1], reverse=True)
|
362 |
+
res_and_dist_l = sorted(res_and_dist_l, key=lambda x: x[1], reverse=True)
|
363 |
+
|
364 |
+
while len(res_and_dist_r) + len(res_and_dist_l) > max_length:
|
365 |
+
if res_and_dist_r[0][1] > res_and_dist_l[0][1]:
|
366 |
+
res_and_dist_r.pop(0)
|
367 |
+
else:
|
368 |
+
res_and_dist_l.pop(0)
|
369 |
+
|
370 |
+
return [res for res, _ in res_and_dist_r], [res for res, _ in res_and_dist_l]
|
371 |
+
|
372 |
+
|
373 |
+
def prepare_holo(row, tmp_dir_path, max_length: int):
|
374 |
+
tmp_gt_r_pdb = os.path.join(tmp_dir_path, f"tmp_{row.id}_gt_r.pdb")
|
375 |
+
tmp_gt_l_pdb = os.path.join(tmp_dir_path, f"tmp_{row.id}_gt_l.pdb")
|
376 |
+
|
377 |
+
if os.path.exists(tmp_gt_r_pdb) and os.path.exists(tmp_gt_l_pdb):
|
378 |
+
return tmp_gt_r_pdb, tmp_gt_l_pdb
|
379 |
+
|
380 |
+
holo_r_pdb = download_pdb(row.holo_R_pdb, tmp_dir_path)
|
381 |
+
holo_l_pdb = download_pdb(row.holo_L_pdb, tmp_dir_path)
|
382 |
+
|
383 |
+
# make gt and apo that matches
|
384 |
+
robust_renumber_protein(holo_r_pdb, tmp_gt_r_pdb)
|
385 |
+
robust_renumber_protein(holo_l_pdb, tmp_gt_l_pdb)
|
386 |
+
|
387 |
+
parser = PDB.PDBParser(QUIET=True)
|
388 |
+
gt_r_prot = parser.get_structure('r', tmp_gt_r_pdb)
|
389 |
+
gt_l_prot = parser.get_structure('l', tmp_gt_l_pdb)
|
390 |
+
|
391 |
+
assert len(list(gt_r_prot.get_chains())) == 1, "can't extract if more than one chain"
|
392 |
+
assert len(list(gt_l_prot.get_chains())) == 1, "can't extract if more than one chain"
|
393 |
+
|
394 |
+
gt_r_res = [res for res in gt_r_prot.get_residues() if "CA" in res]
|
395 |
+
gt_l_res = [res for res in gt_l_prot.get_residues() if "CA" in res]
|
396 |
+
|
397 |
+
to_keep_r, to_keep_l = get_filtered_res(gt_r_res, gt_l_res, max_length)
|
398 |
+
|
399 |
+
io = PDB.PDBIO()
|
400 |
+
io.set_structure(gt_r_prot)
|
401 |
+
io.save(tmp_gt_r_pdb, ResidueSelect(to_keep_r))
|
402 |
+
io = PDB.PDBIO()
|
403 |
+
io.set_structure(gt_l_prot)
|
404 |
+
io.save(tmp_gt_l_pdb, ResidueSelect(to_keep_l))
|
405 |
+
|
406 |
+
return tmp_gt_r_pdb, tmp_gt_l_pdb
|
407 |
+
|
408 |
+
|
409 |
+
def generate_input_pdbs(tmp_input_r_pdb, tmp_input_l_pdb, tmp_gt_r_pdb, tmp_gt_l_pdb,
|
410 |
+
input_r_output_pdb, input_l_output_pdb, gt_r_output_pdb, gt_l_output_pdb):
|
411 |
+
# print("preparing input pdbs", gt_r_output_pdb)
|
412 |
+
if not os.path.exists(tmp_input_r_pdb) or not os.path.exists(tmp_input_l_pdb):
|
413 |
+
raise False
|
414 |
+
|
415 |
+
try:
|
416 |
+
align_gt_and_input(tmp_gt_r_pdb, tmp_input_r_pdb, gt_r_output_pdb, input_r_output_pdb)
|
417 |
+
protein_size_r = validate_matching_input_gt(gt_r_output_pdb, input_r_output_pdb)
|
418 |
+
assert protein_size_r > -1, "Failed to validate matching input and gt"
|
419 |
+
|
420 |
+
align_gt_and_input(tmp_gt_l_pdb, tmp_input_l_pdb, gt_l_output_pdb, input_l_output_pdb)
|
421 |
+
protein_size_l = validate_matching_input_gt(gt_l_output_pdb, input_l_output_pdb)
|
422 |
+
assert protein_size_l > -1, "Failed to validate matching input and gt"
|
423 |
+
except Exception as e:
|
424 |
+
print("Failed to align", e)
|
425 |
+
if os.path.exists(gt_r_output_pdb):
|
426 |
+
os.remove(gt_r_output_pdb)
|
427 |
+
if os.path.exists(gt_l_output_pdb):
|
428 |
+
os.remove(gt_l_output_pdb)
|
429 |
+
if os.path.exists(input_r_output_pdb):
|
430 |
+
os.remove(input_r_output_pdb)
|
431 |
+
if os.path.exists(input_l_output_pdb):
|
432 |
+
os.remove(input_l_output_pdb)
|
433 |
+
return False
|
434 |
+
|
435 |
+
return True
|
436 |
+
|
437 |
+
|
438 |
+
def _get_rel_path(abs_path):
|
439 |
+
return os.path.join(os.path.basename(os.path.dirname(abs_path)), os.path.basename(abs_path))
|
440 |
+
|
441 |
+
|
442 |
+
def main(start_ind: Optional[int] = None, end_ind: Optional[int] = None):
|
443 |
+
print("running with", start_ind, end_ind)
|
444 |
+
|
445 |
+
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
|
446 |
+
output_models_folder = os.path.join(OUTPUT_FOLDER, "pinder_models")
|
447 |
+
output_train_jsons_folder = os.path.join(OUTPUT_FOLDER, "pinder_jsons_train")
|
448 |
+
output_val_jsons_folder = os.path.join(OUTPUT_FOLDER, "pinder_jsons_val")
|
449 |
+
output_test_jsons_folder = os.path.join(OUTPUT_FOLDER, "pinder_jsons_test")
|
450 |
+
output_info = os.path.join(OUTPUT_FOLDER, "pinder_generation_info.csv")
|
451 |
+
|
452 |
+
os.makedirs(output_models_folder, exist_ok=True)
|
453 |
+
os.makedirs(output_train_jsons_folder, exist_ok=True)
|
454 |
+
os.makedirs(output_val_jsons_folder, exist_ok=True)
|
455 |
+
os.makedirs(output_test_jsons_folder, exist_ok=True)
|
456 |
+
|
457 |
+
split_to_folder = {
|
458 |
+
"train": output_train_jsons_folder,
|
459 |
+
"val": output_val_jsons_folder,
|
460 |
+
"test": output_test_jsons_folder
|
461 |
+
}
|
462 |
+
|
463 |
+
# output_info_file = open(output_info, "a+")
|
464 |
+
systems = pd.read_parquet(PINDER_ANNOTATIONS)
|
465 |
+
systems = systems[systems.split.isin(['train', 'val', 'test'])]
|
466 |
+
|
467 |
+
cluster_ids = systems["cluster_id"].value_counts()
|
468 |
+
cluster_ids = cluster_ids[cluster_ids >= 1]
|
469 |
+
print("There are", len(cluster_ids), "clusters")
|
470 |
+
|
471 |
+
# clusters_with_data = 0
|
472 |
+
# for cluster_id in cluster_ids.index:
|
473 |
+
# cluster_systems = systems[systems["cluster_id"] == cluster_id]
|
474 |
+
# with_apo = cluster_systems[cluster_systems.apo_R & cluster_systems.apo_L]
|
475 |
+
# if len(with_apo) > 0:
|
476 |
+
# print("Cluster", cluster_id, "has", len(with_apo), "systems with apo")
|
477 |
+
# clusters_with_data += 1
|
478 |
+
# continue
|
479 |
+
# with_pred = cluster_systems[cluster_systems.predicted_R & cluster_systems.predicted_L]
|
480 |
+
# if len(with_pred) > 0:
|
481 |
+
# print("Cluster", cluster_id, "has", len(with_pred), "systems with pred")
|
482 |
+
# clusters_with_data += 1
|
483 |
+
# continue
|
484 |
+
# print("There are", clusters_with_data, "clusters with data out of", len(cluster_ids))
|
485 |
+
|
486 |
+
for cluster_ind, cluster_id in enumerate(sorted(cluster_ids.index)):
|
487 |
+
if (start_ind is not None and cluster_ind < start_ind) or (end_ind is not None and cluster_ind >= end_ind):
|
488 |
+
continue
|
489 |
+
# if cluster_id != "cluster_10004_p":
|
490 |
+
# continue
|
491 |
+
tmp_dir_path = os.path.join(OUTPUT_FOLDER, "tmp_" + cluster_id)
|
492 |
+
os.makedirs(tmp_dir_path, exist_ok=True)
|
493 |
+
system_id_to_method = {}
|
494 |
+
|
495 |
+
cluster_systems = systems[systems["cluster_id"] == cluster_id]
|
496 |
+
print("--- Starting cluster", cluster_ind, cluster_id, "size", cluster_systems.shape)
|
497 |
+
|
498 |
+
with_apo = cluster_systems[cluster_systems.apo_R & cluster_systems.apo_L]
|
499 |
+
print("*** APO *** Cluster", cluster_id, "has", len(with_apo), "systems with apo")
|
500 |
+
for try_counter, row in enumerate(with_apo.itertuples()):
|
501 |
+
if row.split not in ("test", "val") \
|
502 |
+
and (try_counter >= MAX_TRIES_OF_METHOD or len(system_id_to_method) >= MAX_SYSTEMS_FOR_CLUSTER):
|
503 |
+
continue
|
504 |
+
print("-- Trying to prepare apo", row.id, row.split)
|
505 |
+
try:
|
506 |
+
tmp_gt_r_pdb, tmp_gt_l_pdb = prepare_holo(row, tmp_dir_path, MAX_LENGTH)
|
507 |
+
|
508 |
+
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb")
|
509 |
+
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb")
|
510 |
+
|
511 |
+
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb")
|
512 |
+
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb")
|
513 |
+
|
514 |
+
input_r_pdb_path = download_pdb(row.apo_R_pdb, tmp_dir_path)
|
515 |
+
input_l_pdb_path = download_pdb(row.apo_L_pdb, tmp_dir_path)
|
516 |
+
|
517 |
+
if generate_input_pdbs(input_r_pdb_path, input_l_pdb_path, tmp_gt_r_pdb, tmp_gt_l_pdb,
|
518 |
+
input_r_output_path, input_l_output_path, gt_r_output_path, gt_l_output_path):
|
519 |
+
system_id_to_method[row.id] = "apo"
|
520 |
+
|
521 |
+
except Exception as e:
|
522 |
+
print("Failed to prepare apo", row.id, e)
|
523 |
+
continue
|
524 |
+
|
525 |
+
with_pred = cluster_systems[cluster_systems.predicted_R & cluster_systems.predicted_L]
|
526 |
+
print("*** Pred *** Cluster", cluster_id, "has", len(with_pred), "systems with pred")
|
527 |
+
for try_counter, row in enumerate(with_pred.itertuples()):
|
528 |
+
if row.id in system_id_to_method:
|
529 |
+
continue
|
530 |
+
if row.split not in ("test", "val") \
|
531 |
+
and (try_counter >= MAX_TRIES_OF_METHOD or len(system_id_to_method) >= MAX_SYSTEMS_FOR_CLUSTER):
|
532 |
+
continue
|
533 |
+
print("-- Trying to prepare pred", row.id, row.split)
|
534 |
+
try:
|
535 |
+
tmp_gt_r_pdb, tmp_gt_l_pdb = prepare_holo(row, tmp_dir_path, MAX_LENGTH)
|
536 |
+
|
537 |
+
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb")
|
538 |
+
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb")
|
539 |
+
|
540 |
+
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb")
|
541 |
+
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb")
|
542 |
+
|
543 |
+
input_r_pdb_path = download_pdb(row.predicted_R_pdb, tmp_dir_path)
|
544 |
+
input_l_pdb_path = download_pdb(row.predicted_L_pdb, tmp_dir_path)
|
545 |
+
|
546 |
+
if generate_input_pdbs(input_r_pdb_path, input_l_pdb_path, tmp_gt_r_pdb, tmp_gt_l_pdb,
|
547 |
+
input_r_output_path, input_l_output_path, gt_r_output_path, gt_l_output_path):
|
548 |
+
system_id_to_method[row.id] = "pred"
|
549 |
+
|
550 |
+
except Exception as e:
|
551 |
+
print("Failed to prepare pred", row.id, e)
|
552 |
+
|
553 |
+
# default - use gt
|
554 |
+
print("*** GT *** ")
|
555 |
+
for row in cluster_systems.itertuples():
|
556 |
+
if row.id in system_id_to_method:
|
557 |
+
continue
|
558 |
+
if row.split not in ("test", "val") and len(system_id_to_method) >= MAX_SYSTEMS_FOR_CLUSTER:
|
559 |
+
continue
|
560 |
+
try:
|
561 |
+
tmp_gt_r_pdb, tmp_gt_l_pdb = prepare_holo(row, tmp_dir_path, MAX_LENGTH)
|
562 |
+
|
563 |
+
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb")
|
564 |
+
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb")
|
565 |
+
|
566 |
+
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb")
|
567 |
+
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb")
|
568 |
+
|
569 |
+
shutil.copyfile(tmp_gt_r_pdb, gt_r_output_path)
|
570 |
+
shutil.copyfile(tmp_gt_r_pdb, input_r_output_path)
|
571 |
+
|
572 |
+
shutil.copyfile(tmp_gt_l_pdb, gt_l_output_path)
|
573 |
+
shutil.copyfile(tmp_gt_l_pdb, input_l_output_path)
|
574 |
+
|
575 |
+
system_id_to_method[row.id] = "gt"
|
576 |
+
|
577 |
+
except Exception as e:
|
578 |
+
print("Failed to prepare gt", row.id, e)
|
579 |
+
|
580 |
+
# save jsons
|
581 |
+
for row in cluster_systems.itertuples():
|
582 |
+
if row.id not in system_id_to_method:
|
583 |
+
continue
|
584 |
+
|
585 |
+
output_json_path = os.path.join(split_to_folder[row.split], f"{row.id}.json")
|
586 |
+
|
587 |
+
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb")
|
588 |
+
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb")
|
589 |
+
|
590 |
+
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb")
|
591 |
+
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb")
|
592 |
+
|
593 |
+
protein_r_seq_len = validate_matching_input_gt(gt_r_output_path, input_r_output_path)
|
594 |
+
protein_l_seq_len = validate_matching_input_gt(gt_l_output_path, input_l_output_path)
|
595 |
+
|
596 |
+
json_data = {
|
597 |
+
"input_r_structure": _get_rel_path(input_r_output_path),
|
598 |
+
"input_l_structure": _get_rel_path(input_l_output_path),
|
599 |
+
"gt_r_structure": _get_rel_path(gt_r_output_path),
|
600 |
+
"gt_l_structure": _get_rel_path(gt_l_output_path),
|
601 |
+
"resolution": 1.0,
|
602 |
+
"protein_r_seq_len": protein_r_seq_len,
|
603 |
+
"protein_l_seq_len": protein_l_seq_len,
|
604 |
+
"uniprot_r": row.uniprot_R,
|
605 |
+
"uniprot_l": row.uniprot_L,
|
606 |
+
"cluster": row.cluster_id,
|
607 |
+
"input_protein_source": system_id_to_method[row.id],
|
608 |
+
"pdb_id": row.id,
|
609 |
+
}
|
610 |
+
open(output_json_path, "w").write(json.dumps(json_data, indent=4))
|
611 |
+
|
612 |
+
print("******* saved", row.id, system_id_to_method[row.id], flush=True)
|
613 |
+
shutil.rmtree(tmp_dir_path)
|
614 |
+
|
615 |
+
print("total systems", len(systems))
|
616 |
+
|
617 |
+
|
618 |
+
if __name__ == '__main__':
|
619 |
+
if len(sys.argv) == 3:
|
620 |
+
main(int(sys.argv[1]), int(sys.argv[2]))
|
621 |
+
else:
|
622 |
+
main()
|
resources/{77-182500_only_weights.ckpt → only_weights_102-240750.ckpt}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e32cd27b63f684ed813e65db4369f5af28b1fceb3c81df66bdd4952f6b78853
|
3 |
+
size 52579856
|