DockFormerPP / run_pretrained_model.py
bshor's picture
add code
0fdcb79
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from env_consts import TEST_INPUT_DIR, TEST_OUTPUT_DIR, CKPT_PATH
import json
import logging
import numpy as np
import os
import pickle
from dockformerpp.data.data_modules import OpenFoldSingleDataset
logging.basicConfig()
logger = logging.getLogger(__file__)
logger.setLevel(level=logging.INFO)
import torch
torch_versions = torch.__version__.split(".")
torch_major_version = int(torch_versions[0])
torch_minor_version = int(torch_versions[1])
if (
torch_major_version > 1 or
(torch_major_version == 1 and torch_minor_version >= 12)
):
# Gives a large speedup on Ampere-class GPUs
torch.set_float32_matmul_precision("high")
torch.set_grad_enabled(False)
from dockformerpp.config import model_config
from dockformerpp.utils.script_utils import (load_models_from_command_line, run_model, save_output_structure,
get_latest_checkpoint)
from dockformerpp.utils.tensor_utils import tensor_tree_map
def list_files_with_extensions(dir, extensions):
return [f for f in os.listdir(dir) if f.endswith(extensions)]
def override_config(base_config, overriding_config):
for k, v in overriding_config.items():
if isinstance(v, dict):
base_config[k] = override_config(base_config[k], v)
else:
base_config[k] = v
return base_config
def run_on_folder(input_dir: str, output_dir: str, run_config_path: str, skip_relaxation=True,
long_sequence_inference=False, skip_exists=False):
config_preset = "initial_training"
save_outputs = False
device_name = "cuda" if torch.cuda.is_available() else "cpu"
run_config = json.load(open(run_config_path))
ckpt_path = CKPT_PATH
if ckpt_path is None:
ckpt_path = get_latest_checkpoint(os.path.join(run_config["train_output_dir"], "checkpoint"))
print("Using checkpoint: ", ckpt_path)
config = model_config(config_preset, long_sequence_inference=long_sequence_inference)
config = override_config(config, run_config.get("override_conf", {}))
model_generator = load_models_from_command_line(
config,
model_device=device_name,
model_checkpoint_path=ckpt_path,
output_dir=output_dir)
print("Model loaded")
model, output_directory = next(model_generator)
dataset = OpenFoldSingleDataset(data_dir=input_dir, config=config.data, mode="predict")
for i, processed_feature_dict in enumerate(dataset):
tag = dataset.get_metadata_for_idx(i)["input_name"]
print("Processing", tag)
output_name = f"{tag}_predicted"
output_path = os.path.join(output_directory, f'{output_name}_joined.pdb')
if os.path.exists(output_path) and skip_exists:
print("skipping exists", output_name)
continue
# turn into a batch of size 1
processed_feature_dict = {key: value.unsqueeze(0).to(device_name)
for key, value in processed_feature_dict.items()}
out = run_model(model, processed_feature_dict, tag, output_dir)
# Toss out the recycling dimensions --- we don't need them anymore
processed_feature_dict = tensor_tree_map(
lambda x: np.array(x[..., -1].cpu()),
processed_feature_dict
)
out = tensor_tree_map(lambda x: np.array(x.cpu()), out)
protein_mask = processed_feature_dict["structural_mask"][0].astype(bool)
in_chain_residue_index = np.concatenate([processed_feature_dict["in_chain_residue_index_r"][0],
processed_feature_dict["in_chain_residue_index_l"][0]])
chain_index = [0] * len(processed_feature_dict["in_chain_residue_index_r"][0])
chain_index += [1] * len(processed_feature_dict["in_chain_residue_index_l"][0])
chain_index = np.array(chain_index)
save_output_structure(
aatype=processed_feature_dict["aatype"][0][protein_mask],
residue_index=in_chain_residue_index,
chain_index=chain_index,
plddt=out["plddt"][0][protein_mask],
final_atom_protein_positions=out["final_atom_positions"][0][protein_mask],
final_atom_mask=out["final_atom_mask"][0][protein_mask],
output_path=output_path,
)
logger.info(f"Output written to {output_path}...")
# TODO: fix relaxation
# if not skip_relaxation:
# # Relax the prediction.
# logger.info(f"Running relaxation on {output_path}...")
# from dockformerpp.utils.relax import relax_complex
# try:
# relax_complex(output_path,
# ligand_output_path,
# os.path.join(output_directory, f'{output_name}_protein_relaxed.pdb'),
# os.path.join(output_directory, f'{output_name}_ligand_relaxed.sdf'))
# except Exception as e:
# logger.error(f"Failed to relax {protein_output_path} due to {e}...")
if save_outputs:
output_dict_path = os.path.join(
output_directory, f'{output_name}_output_dict.pkl'
)
with open(output_dict_path, "wb") as fp:
pickle.dump(out, fp, protocol=pickle.HIGHEST_PROTOCOL)
logger.info(f"Model output written to {output_dict_path}...")
if __name__ == "__main__":
config_path = sys.argv[1] if len(sys.argv) > 1 else os.path.join(os.path.dirname(__file__), "run_config.json")
input_dir, output_dir = TEST_INPUT_DIR, TEST_OUTPUT_DIR
options = {"skip_relaxation": True, "long_sequence_inference": False}
if len(sys.argv) > 3:
input_dir = sys.argv[2]
output_dir = sys.argv[3]
if "--relax" in sys.argv:
options["skip_relaxation"] = False
if "--long" in sys.argv:
options["long_sequence_inference"] = True
if "--allow-skip" in sys.argv:
options["skip_exists"] = True
run_on_folder(input_dir, output_dir, config_path, **options)