Spaces:
No application file
No application file
ML-Motivators
commited on
Commit
•
183cb58
1
Parent(s):
93168f6
uploads files
Browse files- environment.yaml +32 -0
- get-pip.py +0 -0
- inference.py +425 -0
- inference.sh +34 -0
- inference_dc.py +578 -0
- vitonhd_test_tagged.json +0 -0
environment.yaml
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: idm
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- nvidia
|
5 |
+
- defaults
|
6 |
+
dependencies:
|
7 |
+
- python=3.10.0=h12debd9_5
|
8 |
+
- pytorch=2.0.1=py3.10_cuda11.8_cudnn8.7.0_0
|
9 |
+
- pytorch-cuda=11.8=h7e8668a_5
|
10 |
+
- torchaudio=2.0.2=py310_cu118
|
11 |
+
- torchtriton=2.0.0=py310
|
12 |
+
- torchvision=0.15.2=py310_cu118
|
13 |
+
- pip=23.3.1=py310h06a4308_0
|
14 |
+
|
15 |
+
- pip:
|
16 |
+
- accelerate==0.25.0
|
17 |
+
- torchmetrics==1.2.1
|
18 |
+
- tqdm==4.66.1
|
19 |
+
- transformers==4.36.2
|
20 |
+
- diffusers==0.25.0
|
21 |
+
- einops==0.7.0
|
22 |
+
- bitsandbytes==0.39.0
|
23 |
+
- scipy==1.11.1
|
24 |
+
- opencv-python
|
25 |
+
- gradio==4.24.0
|
26 |
+
- fvcore
|
27 |
+
- cloudpickle
|
28 |
+
- omegaconf
|
29 |
+
- pycocotools
|
30 |
+
- basicsr
|
31 |
+
- av
|
32 |
+
- onnxruntime==1.16.2
|
get-pip.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
inference.py
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Literal
|
15 |
+
from ip_adapter.ip_adapter import Resampler
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import logging
|
19 |
+
import os
|
20 |
+
import torch.utils.data as data
|
21 |
+
import torchvision
|
22 |
+
import json
|
23 |
+
import accelerate
|
24 |
+
import numpy as np
|
25 |
+
import torch
|
26 |
+
from PIL import Image
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import transformers
|
29 |
+
from accelerate import Accelerator
|
30 |
+
from accelerate.logging import get_logger
|
31 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
32 |
+
from packaging import version
|
33 |
+
from torchvision import transforms
|
34 |
+
import diffusers
|
35 |
+
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, StableDiffusionXLControlNetInpaintPipeline
|
36 |
+
from transformers import AutoTokenizer, PretrainedConfig,CLIPImageProcessor, CLIPVisionModelWithProjection,CLIPTextModelWithProjection, CLIPTextModel, CLIPTokenizer
|
37 |
+
|
38 |
+
from diffusers.utils.import_utils import is_xformers_available
|
39 |
+
|
40 |
+
from src.unet_hacked_tryon import UNet2DConditionModel
|
41 |
+
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
|
42 |
+
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
logger = get_logger(__name__, log_level="INFO")
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
def parse_args():
|
51 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
52 |
+
parser.add_argument("--pretrained_model_name_or_path",type=str,default= "yisol/IDM-VTON",required=False,)
|
53 |
+
parser.add_argument("--width",type=int,default=768,)
|
54 |
+
parser.add_argument("--height",type=int,default=1024,)
|
55 |
+
parser.add_argument("--num_inference_steps",type=int,default=30,)
|
56 |
+
parser.add_argument("--output_dir",type=str,default="result",)
|
57 |
+
parser.add_argument("--unpaired",action="store_true",)
|
58 |
+
parser.add_argument("--data_dir",type=str,default="/home/omnious/workspace/yisol/Dataset/zalando")
|
59 |
+
parser.add_argument("--seed", type=int, default=42,)
|
60 |
+
parser.add_argument("--test_batch_size", type=int, default=2,)
|
61 |
+
parser.add_argument("--guidance_scale",type=float,default=2.0,)
|
62 |
+
parser.add_argument("--mixed_precision",type=str,default=None,choices=["no", "fp16", "bf16"],)
|
63 |
+
parser.add_argument("--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers.")
|
64 |
+
args = parser.parse_args()
|
65 |
+
|
66 |
+
|
67 |
+
return args
|
68 |
+
|
69 |
+
def pil_to_tensor(images):
|
70 |
+
images = np.array(images).astype(np.float32) / 255.0
|
71 |
+
images = torch.from_numpy(images.transpose(2, 0, 1))
|
72 |
+
return images
|
73 |
+
|
74 |
+
|
75 |
+
class VitonHDTestDataset(data.Dataset):
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
dataroot_path: str,
|
79 |
+
phase: Literal["train", "test"],
|
80 |
+
order: Literal["paired", "unpaired"] = "paired",
|
81 |
+
size: Tuple[int, int] = (512, 384),
|
82 |
+
):
|
83 |
+
super(VitonHDTestDataset, self).__init__()
|
84 |
+
self.dataroot = dataroot_path
|
85 |
+
self.phase = phase
|
86 |
+
self.height = size[0]
|
87 |
+
self.width = size[1]
|
88 |
+
self.size = size
|
89 |
+
self.transform = transforms.Compose(
|
90 |
+
[
|
91 |
+
transforms.ToTensor(),
|
92 |
+
transforms.Normalize([0.5], [0.5]),
|
93 |
+
]
|
94 |
+
)
|
95 |
+
self.toTensor = transforms.ToTensor()
|
96 |
+
|
97 |
+
with open(
|
98 |
+
os.path.join(dataroot_path, phase, "vitonhd_" + phase + "_tagged.json"), "r"
|
99 |
+
) as file1:
|
100 |
+
data1 = json.load(file1)
|
101 |
+
|
102 |
+
annotation_list = [
|
103 |
+
"sleeveLength",
|
104 |
+
"neckLine",
|
105 |
+
"item",
|
106 |
+
]
|
107 |
+
|
108 |
+
self.annotation_pair = {}
|
109 |
+
for k, v in data1.items():
|
110 |
+
for elem in v:
|
111 |
+
annotation_str = ""
|
112 |
+
for template in annotation_list:
|
113 |
+
for tag in elem["tag_info"]:
|
114 |
+
if (
|
115 |
+
tag["tag_name"] == template
|
116 |
+
and tag["tag_category"] is not None
|
117 |
+
):
|
118 |
+
annotation_str += tag["tag_category"]
|
119 |
+
annotation_str += " "
|
120 |
+
self.annotation_pair[elem["file_name"]] = annotation_str
|
121 |
+
|
122 |
+
self.order = order
|
123 |
+
self.toTensor = transforms.ToTensor()
|
124 |
+
|
125 |
+
im_names = []
|
126 |
+
c_names = []
|
127 |
+
dataroot_names = []
|
128 |
+
|
129 |
+
|
130 |
+
if phase == "train":
|
131 |
+
filename = os.path.join(dataroot_path, f"{phase}_pairs.txt")
|
132 |
+
else:
|
133 |
+
filename = os.path.join(dataroot_path, f"{phase}_pairs.txt")
|
134 |
+
|
135 |
+
with open(filename, "r") as f:
|
136 |
+
for line in f.readlines():
|
137 |
+
if phase == "train":
|
138 |
+
im_name, _ = line.strip().split()
|
139 |
+
c_name = im_name
|
140 |
+
else:
|
141 |
+
if order == "paired":
|
142 |
+
im_name, _ = line.strip().split()
|
143 |
+
c_name = im_name
|
144 |
+
else:
|
145 |
+
im_name, c_name = line.strip().split()
|
146 |
+
|
147 |
+
im_names.append(im_name)
|
148 |
+
c_names.append(c_name)
|
149 |
+
dataroot_names.append(dataroot_path)
|
150 |
+
|
151 |
+
self.im_names = im_names
|
152 |
+
self.c_names = c_names
|
153 |
+
self.dataroot_names = dataroot_names
|
154 |
+
self.clip_processor = CLIPImageProcessor()
|
155 |
+
def __getitem__(self, index):
|
156 |
+
c_name = self.c_names[index]
|
157 |
+
im_name = self.im_names[index]
|
158 |
+
if c_name in self.annotation_pair:
|
159 |
+
cloth_annotation = self.annotation_pair[c_name]
|
160 |
+
else:
|
161 |
+
cloth_annotation = "shirts"
|
162 |
+
cloth = Image.open(os.path.join(self.dataroot, self.phase, "cloth", c_name))
|
163 |
+
|
164 |
+
im_pil_big = Image.open(
|
165 |
+
os.path.join(self.dataroot, self.phase, "image", im_name)
|
166 |
+
).resize((self.width,self.height))
|
167 |
+
image = self.transform(im_pil_big)
|
168 |
+
|
169 |
+
mask = Image.open(os.path.join(self.dataroot, self.phase, "agnostic-mask", im_name.replace('.jpg','_mask.png'))).resize((self.width,self.height))
|
170 |
+
mask = self.toTensor(mask)
|
171 |
+
mask = mask[:1]
|
172 |
+
mask = 1-mask
|
173 |
+
im_mask = image * mask
|
174 |
+
|
175 |
+
pose_img = Image.open(
|
176 |
+
os.path.join(self.dataroot, self.phase, "image-densepose", im_name)
|
177 |
+
)
|
178 |
+
pose_img = self.transform(pose_img) # [-1,1]
|
179 |
+
|
180 |
+
result = {}
|
181 |
+
result["c_name"] = c_name
|
182 |
+
result["im_name"] = im_name
|
183 |
+
result["image"] = image
|
184 |
+
result["cloth_pure"] = self.transform(cloth)
|
185 |
+
result["cloth"] = self.clip_processor(images=cloth, return_tensors="pt").pixel_values
|
186 |
+
result["inpaint_mask"] =1-mask
|
187 |
+
result["im_mask"] = im_mask
|
188 |
+
result["caption_cloth"] = "a photo of " + cloth_annotation
|
189 |
+
result["caption"] = "model is wearing a " + cloth_annotation
|
190 |
+
result["pose_img"] = pose_img
|
191 |
+
|
192 |
+
return result
|
193 |
+
|
194 |
+
def __len__(self):
|
195 |
+
# model images + cloth image
|
196 |
+
return len(self.im_names)
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
def main():
|
202 |
+
args = parse_args()
|
203 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir)
|
204 |
+
accelerator = Accelerator(
|
205 |
+
mixed_precision=args.mixed_precision,
|
206 |
+
project_config=accelerator_project_config,
|
207 |
+
)
|
208 |
+
if accelerator.is_local_main_process:
|
209 |
+
transformers.utils.logging.set_verbosity_warning()
|
210 |
+
diffusers.utils.logging.set_verbosity_info()
|
211 |
+
else:
|
212 |
+
transformers.utils.logging.set_verbosity_error()
|
213 |
+
diffusers.utils.logging.set_verbosity_error()
|
214 |
+
# If passed along, set the training seed now.
|
215 |
+
if args.seed is not None:
|
216 |
+
set_seed(args.seed)
|
217 |
+
|
218 |
+
# Handle the repository creation
|
219 |
+
if accelerator.is_main_process:
|
220 |
+
if args.output_dir is not None:
|
221 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
222 |
+
|
223 |
+
weight_dtype = torch.float16
|
224 |
+
# if accelerator.mixed_precision == "fp16":
|
225 |
+
# weight_dtype = torch.float16
|
226 |
+
# args.mixed_precision = accelerator.mixed_precision
|
227 |
+
# elif accelerator.mixed_precision == "bf16":
|
228 |
+
# weight_dtype = torch.bfloat16
|
229 |
+
# args.mixed_precision = accelerator.mixed_precision
|
230 |
+
|
231 |
+
# Load scheduler, tokenizer and models.
|
232 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
233 |
+
vae = AutoencoderKL.from_pretrained(
|
234 |
+
args.pretrained_model_name_or_path,
|
235 |
+
subfolder="vae",
|
236 |
+
torch_dtype=torch.float16,
|
237 |
+
)
|
238 |
+
unet = UNet2DConditionModel.from_pretrained(
|
239 |
+
args.pretrained_model_name_or_path,
|
240 |
+
subfolder="unet",
|
241 |
+
torch_dtype=torch.float16,
|
242 |
+
)
|
243 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
244 |
+
args.pretrained_model_name_or_path,
|
245 |
+
subfolder="image_encoder",
|
246 |
+
torch_dtype=torch.float16,
|
247 |
+
)
|
248 |
+
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
249 |
+
args.pretrained_model_name_or_path,
|
250 |
+
subfolder="unet_encoder",
|
251 |
+
torch_dtype=torch.float16,
|
252 |
+
)
|
253 |
+
text_encoder_one = CLIPTextModel.from_pretrained(
|
254 |
+
args.pretrained_model_name_or_path,
|
255 |
+
subfolder="text_encoder",
|
256 |
+
torch_dtype=torch.float16,
|
257 |
+
)
|
258 |
+
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
259 |
+
args.pretrained_model_name_or_path,
|
260 |
+
subfolder="text_encoder_2",
|
261 |
+
torch_dtype=torch.float16,
|
262 |
+
)
|
263 |
+
tokenizer_one = AutoTokenizer.from_pretrained(
|
264 |
+
args.pretrained_model_name_or_path,
|
265 |
+
subfolder="tokenizer",
|
266 |
+
revision=None,
|
267 |
+
use_fast=False,
|
268 |
+
)
|
269 |
+
tokenizer_two = AutoTokenizer.from_pretrained(
|
270 |
+
args.pretrained_model_name_or_path,
|
271 |
+
subfolder="tokenizer_2",
|
272 |
+
revision=None,
|
273 |
+
use_fast=False,
|
274 |
+
)
|
275 |
+
|
276 |
+
|
277 |
+
# Freeze vae and text_encoder and set unet to trainable
|
278 |
+
unet.requires_grad_(False)
|
279 |
+
vae.requires_grad_(False)
|
280 |
+
image_encoder.requires_grad_(False)
|
281 |
+
UNet_Encoder.requires_grad_(False)
|
282 |
+
text_encoder_one.requires_grad_(False)
|
283 |
+
text_encoder_two.requires_grad_(False)
|
284 |
+
UNet_Encoder.to(accelerator.device, weight_dtype)
|
285 |
+
unet.eval()
|
286 |
+
UNet_Encoder.eval()
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
if args.enable_xformers_memory_efficient_attention:
|
291 |
+
if is_xformers_available():
|
292 |
+
import xformers
|
293 |
+
|
294 |
+
xformers_version = version.parse(xformers.__version__)
|
295 |
+
if xformers_version == version.parse("0.0.16"):
|
296 |
+
logger.warn(
|
297 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
298 |
+
)
|
299 |
+
unet.enable_xformers_memory_efficient_attention()
|
300 |
+
else:
|
301 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
302 |
+
|
303 |
+
test_dataset = VitonHDTestDataset(
|
304 |
+
dataroot_path=args.data_dir,
|
305 |
+
phase="test",
|
306 |
+
order="unpaired" if args.unpaired else "paired",
|
307 |
+
size=(args.height, args.width),
|
308 |
+
)
|
309 |
+
test_dataloader = torch.utils.data.DataLoader(
|
310 |
+
test_dataset,
|
311 |
+
shuffle=False,
|
312 |
+
batch_size=args.test_batch_size,
|
313 |
+
num_workers=4,
|
314 |
+
)
|
315 |
+
|
316 |
+
pipe = TryonPipeline.from_pretrained(
|
317 |
+
args.pretrained_model_name_or_path,
|
318 |
+
unet=unet,
|
319 |
+
vae=vae,
|
320 |
+
feature_extractor= CLIPImageProcessor(),
|
321 |
+
text_encoder = text_encoder_one,
|
322 |
+
text_encoder_2 = text_encoder_two,
|
323 |
+
tokenizer = tokenizer_one,
|
324 |
+
tokenizer_2 = tokenizer_two,
|
325 |
+
scheduler = noise_scheduler,
|
326 |
+
image_encoder=image_encoder,
|
327 |
+
torch_dtype=torch.float16,
|
328 |
+
).to(accelerator.device)
|
329 |
+
pipe.unet_encoder = UNet_Encoder
|
330 |
+
|
331 |
+
# pipe.enable_sequential_cpu_offload()
|
332 |
+
# pipe.enable_model_cpu_offload()
|
333 |
+
# pipe.enable_vae_slicing()
|
334 |
+
|
335 |
+
|
336 |
+
|
337 |
+
with torch.no_grad():
|
338 |
+
# Extract the images
|
339 |
+
with torch.cuda.amp.autocast():
|
340 |
+
with torch.no_grad():
|
341 |
+
for sample in test_dataloader:
|
342 |
+
img_emb_list = []
|
343 |
+
for i in range(sample['cloth'].shape[0]):
|
344 |
+
img_emb_list.append(sample['cloth'][i])
|
345 |
+
|
346 |
+
prompt = sample["caption"]
|
347 |
+
|
348 |
+
num_prompts = sample['cloth'].shape[0]
|
349 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
350 |
+
|
351 |
+
if not isinstance(prompt, List):
|
352 |
+
prompt = [prompt] * num_prompts
|
353 |
+
if not isinstance(negative_prompt, List):
|
354 |
+
negative_prompt = [negative_prompt] * num_prompts
|
355 |
+
|
356 |
+
image_embeds = torch.cat(img_emb_list,dim=0)
|
357 |
+
|
358 |
+
with torch.inference_mode():
|
359 |
+
(
|
360 |
+
prompt_embeds,
|
361 |
+
negative_prompt_embeds,
|
362 |
+
pooled_prompt_embeds,
|
363 |
+
negative_pooled_prompt_embeds,
|
364 |
+
) = pipe.encode_prompt(
|
365 |
+
prompt,
|
366 |
+
num_images_per_prompt=1,
|
367 |
+
do_classifier_free_guidance=True,
|
368 |
+
negative_prompt=negative_prompt,
|
369 |
+
)
|
370 |
+
|
371 |
+
|
372 |
+
prompt = sample["caption_cloth"]
|
373 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
374 |
+
|
375 |
+
if not isinstance(prompt, List):
|
376 |
+
prompt = [prompt] * num_prompts
|
377 |
+
if not isinstance(negative_prompt, List):
|
378 |
+
negative_prompt = [negative_prompt] * num_prompts
|
379 |
+
|
380 |
+
|
381 |
+
with torch.inference_mode():
|
382 |
+
(
|
383 |
+
prompt_embeds_c,
|
384 |
+
_,
|
385 |
+
_,
|
386 |
+
_,
|
387 |
+
) = pipe.encode_prompt(
|
388 |
+
prompt,
|
389 |
+
num_images_per_prompt=1,
|
390 |
+
do_classifier_free_guidance=False,
|
391 |
+
negative_prompt=negative_prompt,
|
392 |
+
)
|
393 |
+
|
394 |
+
|
395 |
+
|
396 |
+
generator = torch.Generator(pipe.device).manual_seed(args.seed) if args.seed is not None else None
|
397 |
+
images = pipe(
|
398 |
+
prompt_embeds=prompt_embeds,
|
399 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
400 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
401 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
402 |
+
num_inference_steps=args.num_inference_steps,
|
403 |
+
generator=generator,
|
404 |
+
strength = 1.0,
|
405 |
+
pose_img = sample['pose_img'],
|
406 |
+
text_embeds_cloth=prompt_embeds_c,
|
407 |
+
cloth = sample["cloth_pure"].to(accelerator.device),
|
408 |
+
mask_image=sample['inpaint_mask'],
|
409 |
+
image=(sample['image']+1.0)/2.0,
|
410 |
+
height=args.height,
|
411 |
+
width=args.width,
|
412 |
+
guidance_scale=args.guidance_scale,
|
413 |
+
ip_adapter_image = image_embeds,
|
414 |
+
)[0]
|
415 |
+
|
416 |
+
|
417 |
+
for i in range(len(images)):
|
418 |
+
x_sample = pil_to_tensor(images[i])
|
419 |
+
torchvision.utils.save_image(x_sample,os.path.join(args.output_dir,sample['im_name'][i]))
|
420 |
+
|
421 |
+
|
422 |
+
|
423 |
+
|
424 |
+
if __name__ == "__main__":
|
425 |
+
main()
|
inference.sh
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#VITON-HD
|
2 |
+
##paired setting
|
3 |
+
accelerate launch inference.py --pretrained_model_name_or_path "yisol/IDM-VTON" \
|
4 |
+
--width 768 --height 1024 --num_inference_steps 30 \
|
5 |
+
--output_dir "result" --data_dir "/home/omnious/workspace/yisol/Dataset/zalando" \
|
6 |
+
--seed 42 --test_batch_size 2 --guidance_scale 2.0
|
7 |
+
|
8 |
+
|
9 |
+
##unpaired setting
|
10 |
+
accelerate launch inference.py --pretrained_model_name_or_path "yisol/IDM-VTON" \
|
11 |
+
--width 768 --height 1024 --num_inference_steps 30 \
|
12 |
+
--output_dir "result" --unpaired --data_dir "/home/omnious/workspace/yisol/Dataset/zalando" \
|
13 |
+
--seed 42 --test_batch_size 2 --guidance_scale 2.0
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
#DressCode
|
18 |
+
##upper_body
|
19 |
+
accelerate launch inference_dc.py --pretrained_model_name_or_path "yisol/IDM-VTON" \
|
20 |
+
--width 768 --height 1024 --num_inference_steps 30 \
|
21 |
+
--output_dir "result" --unpaired --data_dir "/home/omnious/workspace/yisol/DressCode" \
|
22 |
+
--seed 42 --test_batch_size 2 --guidance_scale 2.0 --category "upper_body"
|
23 |
+
|
24 |
+
##lower_body
|
25 |
+
accelerate launch inference_dc.py --pretrained_model_name_or_path "yisol/IDM-VTON" \
|
26 |
+
--width 768 --height 1024 --num_inference_steps 30 \
|
27 |
+
--output_dir "result" --unpaired --data_dir "/home/omnious/workspace/yisol/DressCode" \
|
28 |
+
--seed 42 --test_batch_size 2 --guidance_scale 2.0 --category "lower_body"
|
29 |
+
|
30 |
+
##dresses
|
31 |
+
accelerate launch inference_dc.py --pretrained_model_name_or_path "yisol/IDM-VTON" \
|
32 |
+
--width 768 --height 1024 --num_inference_steps 30 \
|
33 |
+
--output_dir "result" --unpaired --data_dir "/home/omnious/workspace/yisol/DressCode" \
|
34 |
+
--seed 42 --test_batch_size 2 --guidance_scale 2.0 --category "dresses"
|
inference_dc.py
ADDED
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Literal
|
15 |
+
from ip_adapter.ip_adapter import Resampler
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import logging
|
19 |
+
import os
|
20 |
+
import torch.utils.data as data
|
21 |
+
import torchvision
|
22 |
+
import json
|
23 |
+
import accelerate
|
24 |
+
import numpy as np
|
25 |
+
import torch
|
26 |
+
from PIL import Image, ImageDraw
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import transformers
|
29 |
+
from accelerate import Accelerator
|
30 |
+
from accelerate.logging import get_logger
|
31 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
32 |
+
from packaging import version
|
33 |
+
from torchvision import transforms
|
34 |
+
import diffusers
|
35 |
+
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, StableDiffusionXLControlNetInpaintPipeline
|
36 |
+
from transformers import AutoTokenizer, PretrainedConfig,CLIPImageProcessor, CLIPVisionModelWithProjection,CLIPTextModelWithProjection, CLIPTextModel, CLIPTokenizer
|
37 |
+
import cv2
|
38 |
+
from diffusers.utils.import_utils import is_xformers_available
|
39 |
+
from numpy.linalg import lstsq
|
40 |
+
|
41 |
+
from src.unet_hacked_tryon import UNet2DConditionModel
|
42 |
+
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
|
43 |
+
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
logger = get_logger(__name__, log_level="INFO")
|
48 |
+
|
49 |
+
label_map={
|
50 |
+
"background": 0,
|
51 |
+
"hat": 1,
|
52 |
+
"hair": 2,
|
53 |
+
"sunglasses": 3,
|
54 |
+
"upper_clothes": 4,
|
55 |
+
"skirt": 5,
|
56 |
+
"pants": 6,
|
57 |
+
"dress": 7,
|
58 |
+
"belt": 8,
|
59 |
+
"left_shoe": 9,
|
60 |
+
"right_shoe": 10,
|
61 |
+
"head": 11,
|
62 |
+
"left_leg": 12,
|
63 |
+
"right_leg": 13,
|
64 |
+
"left_arm": 14,
|
65 |
+
"right_arm": 15,
|
66 |
+
"bag": 16,
|
67 |
+
"scarf": 17,
|
68 |
+
}
|
69 |
+
|
70 |
+
def parse_args():
|
71 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
72 |
+
parser.add_argument("--pretrained_model_name_or_path",type=str,default= "yisol/IDM-VTON",required=False,)
|
73 |
+
parser.add_argument("--width",type=int,default=768,)
|
74 |
+
parser.add_argument("--height",type=int,default=1024,)
|
75 |
+
parser.add_argument("--num_inference_steps",type=int,default=30,)
|
76 |
+
parser.add_argument("--output_dir",type=str,default="result",)
|
77 |
+
parser.add_argument("--category",type=str,default="upper_body",choices=["upper_body", "lower_body", "dresses"])
|
78 |
+
parser.add_argument("--unpaired",action="store_true",)
|
79 |
+
parser.add_argument("--data_dir",type=str,default="/home/omnious/workspace/yisol/Dataset/zalando")
|
80 |
+
parser.add_argument("--seed", type=int, default=42,)
|
81 |
+
parser.add_argument("--test_batch_size", type=int, default=2,)
|
82 |
+
parser.add_argument("--guidance_scale",type=float,default=2.0,)
|
83 |
+
parser.add_argument("--mixed_precision",type=str,default=None,choices=["no", "fp16", "bf16"],)
|
84 |
+
parser.add_argument("--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers.")
|
85 |
+
args = parser.parse_args()
|
86 |
+
|
87 |
+
|
88 |
+
return args
|
89 |
+
|
90 |
+
def pil_to_tensor(images):
|
91 |
+
images = np.array(images).astype(np.float32) / 255.0
|
92 |
+
images = torch.from_numpy(images.transpose(2, 0, 1))
|
93 |
+
return images
|
94 |
+
|
95 |
+
|
96 |
+
class DresscodeTestDataset(data.Dataset):
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
dataroot_path: str,
|
100 |
+
phase: Literal["train", "test"],
|
101 |
+
order: Literal["paired", "unpaired"] = "paired",
|
102 |
+
category = "upper_body",
|
103 |
+
size: Tuple[int, int] = (512, 384),
|
104 |
+
):
|
105 |
+
super(DresscodeTestDataset, self).__init__()
|
106 |
+
self.dataroot = os.path.join(dataroot_path,category)
|
107 |
+
self.phase = phase
|
108 |
+
self.height = size[0]
|
109 |
+
self.width = size[1]
|
110 |
+
self.size = size
|
111 |
+
self.transform = transforms.Compose(
|
112 |
+
[
|
113 |
+
transforms.ToTensor(),
|
114 |
+
transforms.Normalize([0.5], [0.5]),
|
115 |
+
]
|
116 |
+
)
|
117 |
+
self.toTensor = transforms.ToTensor()
|
118 |
+
self.order = order
|
119 |
+
self.radius = 5
|
120 |
+
self.category = category
|
121 |
+
im_names = []
|
122 |
+
c_names = []
|
123 |
+
|
124 |
+
|
125 |
+
if phase == "train":
|
126 |
+
filename = os.path.join(dataroot_path,category, f"{phase}_pairs.txt")
|
127 |
+
else:
|
128 |
+
filename = os.path.join(dataroot_path,category, f"{phase}_pairs_{order}.txt")
|
129 |
+
|
130 |
+
with open(filename, "r") as f:
|
131 |
+
for line in f.readlines():
|
132 |
+
im_name, c_name = line.strip().split()
|
133 |
+
|
134 |
+
im_names.append(im_name)
|
135 |
+
c_names.append(c_name)
|
136 |
+
|
137 |
+
|
138 |
+
file_path = os.path.join(dataroot_path,category,"dc_caption.txt")
|
139 |
+
|
140 |
+
self.annotation_pair = {}
|
141 |
+
with open(file_path, "r") as file:
|
142 |
+
for line in file:
|
143 |
+
parts = line.strip().split(" ")
|
144 |
+
self.annotation_pair[parts[0]] = ' '.join(parts[1:])
|
145 |
+
|
146 |
+
|
147 |
+
self.im_names = im_names
|
148 |
+
self.c_names = c_names
|
149 |
+
self.clip_processor = CLIPImageProcessor()
|
150 |
+
def __getitem__(self, index):
|
151 |
+
c_name = self.c_names[index]
|
152 |
+
im_name = self.im_names[index]
|
153 |
+
if c_name in self.annotation_pair:
|
154 |
+
cloth_annotation = self.annotation_pair[c_name]
|
155 |
+
else:
|
156 |
+
cloth_annotation = self.category
|
157 |
+
cloth = Image.open(os.path.join(self.dataroot, "images", c_name))
|
158 |
+
|
159 |
+
im_pil_big = Image.open(
|
160 |
+
os.path.join(self.dataroot, "images", im_name)
|
161 |
+
).resize((self.width,self.height))
|
162 |
+
image = self.transform(im_pil_big)
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
skeleton = Image.open(os.path.join(self.dataroot, 'skeletons', im_name.replace("_0", "_5")))
|
168 |
+
skeleton = skeleton.resize((self.width, self.height))
|
169 |
+
skeleton = self.transform(skeleton)
|
170 |
+
|
171 |
+
# Label Map
|
172 |
+
parse_name = im_name.replace('_0.jpg', '_4.png')
|
173 |
+
im_parse = Image.open(os.path.join(self.dataroot, 'label_maps', parse_name))
|
174 |
+
im_parse = im_parse.resize((self.width, self.height), Image.NEAREST)
|
175 |
+
parse_array = np.array(im_parse)
|
176 |
+
|
177 |
+
# Load pose points
|
178 |
+
pose_name = im_name.replace('_0.jpg', '_2.json')
|
179 |
+
with open(os.path.join(self.dataroot, 'keypoints', pose_name), 'r') as f:
|
180 |
+
pose_label = json.load(f)
|
181 |
+
pose_data = pose_label['keypoints']
|
182 |
+
pose_data = np.array(pose_data)
|
183 |
+
pose_data = pose_data.reshape((-1, 4))
|
184 |
+
|
185 |
+
point_num = pose_data.shape[0]
|
186 |
+
pose_map = torch.zeros(point_num, self.height, self.width)
|
187 |
+
r = self.radius * (self.height / 512.0)
|
188 |
+
for i in range(point_num):
|
189 |
+
one_map = Image.new('L', (self.width, self.height))
|
190 |
+
draw = ImageDraw.Draw(one_map)
|
191 |
+
point_x = np.multiply(pose_data[i, 0], self.width / 384.0)
|
192 |
+
point_y = np.multiply(pose_data[i, 1], self.height / 512.0)
|
193 |
+
if point_x > 1 and point_y > 1:
|
194 |
+
draw.rectangle((point_x - r, point_y - r, point_x + r, point_y + r), 'white', 'white')
|
195 |
+
one_map = self.toTensor(one_map)
|
196 |
+
pose_map[i] = one_map[0]
|
197 |
+
|
198 |
+
agnostic_mask = self.get_agnostic(parse_array, pose_data, self.category, (self.width,self.height))
|
199 |
+
# agnostic_mask = transforms.functional.resize(agnostic_mask, (self.height, self.width),
|
200 |
+
# interpolation=transforms.InterpolationMode.NEAREST)
|
201 |
+
|
202 |
+
mask = 1 - agnostic_mask
|
203 |
+
im_mask = image * agnostic_mask
|
204 |
+
|
205 |
+
pose_img = Image.open(
|
206 |
+
os.path.join(self.dataroot, "image-densepose", im_name)
|
207 |
+
)
|
208 |
+
pose_img = self.transform(pose_img) # [-1,1]
|
209 |
+
|
210 |
+
result = {}
|
211 |
+
result["c_name"] = c_name
|
212 |
+
result["im_name"] = im_name
|
213 |
+
result["image"] = image
|
214 |
+
result["cloth_pure"] = self.transform(cloth)
|
215 |
+
result["cloth"] = self.clip_processor(images=cloth, return_tensors="pt").pixel_values
|
216 |
+
result["inpaint_mask"] =mask
|
217 |
+
result["im_mask"] = im_mask
|
218 |
+
result["caption_cloth"] = "a photo of " + cloth_annotation
|
219 |
+
result["caption"] = "model is wearing a " + cloth_annotation
|
220 |
+
result["pose_img"] = pose_img
|
221 |
+
|
222 |
+
return result
|
223 |
+
|
224 |
+
def __len__(self):
|
225 |
+
# model images + cloth image
|
226 |
+
return len(self.im_names)
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
def get_agnostic(self,parse_array, pose_data, category, size):
|
232 |
+
parse_shape = (parse_array > 0).astype(np.float32)
|
233 |
+
|
234 |
+
parse_head = (parse_array == 1).astype(np.float32) + \
|
235 |
+
(parse_array == 2).astype(np.float32) + \
|
236 |
+
(parse_array == 3).astype(np.float32) + \
|
237 |
+
(parse_array == 11).astype(np.float32)
|
238 |
+
|
239 |
+
parser_mask_fixed = (parse_array == label_map["hair"]).astype(np.float32) + \
|
240 |
+
(parse_array == label_map["left_shoe"]).astype(np.float32) + \
|
241 |
+
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
|
242 |
+
(parse_array == label_map["hat"]).astype(np.float32) + \
|
243 |
+
(parse_array == label_map["sunglasses"]).astype(np.float32) + \
|
244 |
+
(parse_array == label_map["scarf"]).astype(np.float32) + \
|
245 |
+
(parse_array == label_map["bag"]).astype(np.float32)
|
246 |
+
|
247 |
+
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
|
248 |
+
|
249 |
+
arms = (parse_array == 14).astype(np.float32) + (parse_array == 15).astype(np.float32)
|
250 |
+
|
251 |
+
if category == 'dresses':
|
252 |
+
label_cat = 7
|
253 |
+
parse_mask = (parse_array == 7).astype(np.float32) + \
|
254 |
+
(parse_array == 12).astype(np.float32) + \
|
255 |
+
(parse_array == 13).astype(np.float32)
|
256 |
+
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
257 |
+
|
258 |
+
elif category == 'upper_body':
|
259 |
+
label_cat = 4
|
260 |
+
parse_mask = (parse_array == 4).astype(np.float32)
|
261 |
+
|
262 |
+
parser_mask_fixed += (parse_array == label_map["skirt"]).astype(np.float32) + \
|
263 |
+
(parse_array == label_map["pants"]).astype(np.float32)
|
264 |
+
|
265 |
+
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
266 |
+
elif category == 'lower_body':
|
267 |
+
label_cat = 6
|
268 |
+
parse_mask = (parse_array == 6).astype(np.float32) + \
|
269 |
+
(parse_array == 12).astype(np.float32) + \
|
270 |
+
(parse_array == 13).astype(np.float32)
|
271 |
+
|
272 |
+
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
|
273 |
+
(parse_array == 14).astype(np.float32) + \
|
274 |
+
(parse_array == 15).astype(np.float32)
|
275 |
+
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
276 |
+
|
277 |
+
parse_head = torch.from_numpy(parse_head) # [0,1]
|
278 |
+
parse_mask = torch.from_numpy(parse_mask) # [0,1]
|
279 |
+
parser_mask_fixed = torch.from_numpy(parser_mask_fixed)
|
280 |
+
parser_mask_changeable = torch.from_numpy(parser_mask_changeable)
|
281 |
+
|
282 |
+
# dilation
|
283 |
+
parse_without_cloth = np.logical_and(parse_shape, np.logical_not(parse_mask))
|
284 |
+
parse_mask = parse_mask.cpu().numpy()
|
285 |
+
|
286 |
+
width = size[0]
|
287 |
+
height = size[1]
|
288 |
+
|
289 |
+
im_arms = Image.new('L', (width, height))
|
290 |
+
arms_draw = ImageDraw.Draw(im_arms)
|
291 |
+
if category == 'dresses' or category == 'upper_body':
|
292 |
+
shoulder_right = tuple(np.multiply(pose_data[2, :2], height / 512.0))
|
293 |
+
shoulder_left = tuple(np.multiply(pose_data[5, :2], height / 512.0))
|
294 |
+
elbow_right = tuple(np.multiply(pose_data[3, :2], height / 512.0))
|
295 |
+
elbow_left = tuple(np.multiply(pose_data[6, :2], height / 512.0))
|
296 |
+
wrist_right = tuple(np.multiply(pose_data[4, :2], height / 512.0))
|
297 |
+
wrist_left = tuple(np.multiply(pose_data[7, :2], height / 512.0))
|
298 |
+
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
|
299 |
+
if elbow_right[0] <= 1. and elbow_right[1] <= 1.:
|
300 |
+
arms_draw.line([wrist_left, elbow_left, shoulder_left, shoulder_right], 'white', 30, 'curve')
|
301 |
+
else:
|
302 |
+
arms_draw.line([wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right], 'white', 30,
|
303 |
+
'curve')
|
304 |
+
elif wrist_left[0] <= 1. and wrist_left[1] <= 1.:
|
305 |
+
if elbow_left[0] <= 1. and elbow_left[1] <= 1.:
|
306 |
+
arms_draw.line([shoulder_left, shoulder_right, elbow_right, wrist_right], 'white', 30, 'curve')
|
307 |
+
else:
|
308 |
+
arms_draw.line([elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right], 'white', 30,
|
309 |
+
'curve')
|
310 |
+
else:
|
311 |
+
arms_draw.line([wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right], 'white',
|
312 |
+
30, 'curve')
|
313 |
+
|
314 |
+
if height > 512:
|
315 |
+
im_arms = cv2.dilate(np.float32(im_arms), np.ones((10, 10), np.uint16), iterations=5)
|
316 |
+
elif height > 256:
|
317 |
+
im_arms = cv2.dilate(np.float32(im_arms), np.ones((5, 5), np.uint16), iterations=5)
|
318 |
+
hands = np.logical_and(np.logical_not(im_arms), arms)
|
319 |
+
parse_mask += im_arms
|
320 |
+
parser_mask_fixed += hands
|
321 |
+
|
322 |
+
# delete neck
|
323 |
+
parse_head_2 = torch.clone(parse_head)
|
324 |
+
if category == 'dresses' or category == 'upper_body':
|
325 |
+
points = []
|
326 |
+
points.append(np.multiply(pose_data[2, :2], height / 512.0))
|
327 |
+
points.append(np.multiply(pose_data[5, :2], height / 512.0))
|
328 |
+
x_coords, y_coords = zip(*points)
|
329 |
+
A = np.vstack([x_coords, np.ones(len(x_coords))]).T
|
330 |
+
m, c = lstsq(A, y_coords, rcond=None)[0]
|
331 |
+
for i in range(parse_array.shape[1]):
|
332 |
+
y = i * m + c
|
333 |
+
parse_head_2[int(y - 20 * (height / 512.0)):, i] = 0
|
334 |
+
|
335 |
+
parser_mask_fixed = np.logical_or(parser_mask_fixed, np.array(parse_head_2, dtype=np.uint16))
|
336 |
+
parse_mask += np.logical_or(parse_mask, np.logical_and(np.array(parse_head, dtype=np.uint16),
|
337 |
+
np.logical_not(np.array(parse_head_2, dtype=np.uint16))))
|
338 |
+
|
339 |
+
if height > 512:
|
340 |
+
parse_mask = cv2.dilate(parse_mask, np.ones((20, 20), np.uint16), iterations=5)
|
341 |
+
elif height > 256:
|
342 |
+
parse_mask = cv2.dilate(parse_mask, np.ones((10, 10), np.uint16), iterations=5)
|
343 |
+
else:
|
344 |
+
parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint16), iterations=5)
|
345 |
+
parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask))
|
346 |
+
parse_mask_total = np.logical_or(parse_mask, parser_mask_fixed)
|
347 |
+
agnostic_mask = parse_mask_total.unsqueeze(0)
|
348 |
+
return agnostic_mask
|
349 |
+
|
350 |
+
|
351 |
+
|
352 |
+
|
353 |
+
def main():
|
354 |
+
args = parse_args()
|
355 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir)
|
356 |
+
accelerator = Accelerator(
|
357 |
+
mixed_precision=args.mixed_precision,
|
358 |
+
project_config=accelerator_project_config,
|
359 |
+
)
|
360 |
+
if accelerator.is_local_main_process:
|
361 |
+
transformers.utils.logging.set_verbosity_warning()
|
362 |
+
diffusers.utils.logging.set_verbosity_info()
|
363 |
+
else:
|
364 |
+
transformers.utils.logging.set_verbosity_error()
|
365 |
+
diffusers.utils.logging.set_verbosity_error()
|
366 |
+
# If passed along, set the training seed now.
|
367 |
+
if args.seed is not None:
|
368 |
+
set_seed(args.seed)
|
369 |
+
|
370 |
+
# Handle the repository creation
|
371 |
+
if accelerator.is_main_process:
|
372 |
+
if args.output_dir is not None:
|
373 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
374 |
+
|
375 |
+
weight_dtype = torch.float16
|
376 |
+
# if accelerator.mixed_precision == "fp16":
|
377 |
+
# weight_dtype = torch.float16
|
378 |
+
# args.mixed_precision = accelerator.mixed_precision
|
379 |
+
# elif accelerator.mixed_precision == "bf16":
|
380 |
+
# weight_dtype = torch.bfloat16
|
381 |
+
# args.mixed_precision = accelerator.mixed_precision
|
382 |
+
|
383 |
+
# Load scheduler, tokenizer and models.
|
384 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
385 |
+
vae = AutoencoderKL.from_pretrained(
|
386 |
+
args.pretrained_model_name_or_path,
|
387 |
+
subfolder="vae",
|
388 |
+
torch_dtype=torch.float16,
|
389 |
+
)
|
390 |
+
unet = UNet2DConditionModel.from_pretrained(
|
391 |
+
"yisol/IDM-VTON-DC",
|
392 |
+
subfolder="unet",
|
393 |
+
torch_dtype=torch.float16,
|
394 |
+
)
|
395 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
396 |
+
args.pretrained_model_name_or_path,
|
397 |
+
subfolder="image_encoder",
|
398 |
+
torch_dtype=torch.float16,
|
399 |
+
)
|
400 |
+
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
401 |
+
args.pretrained_model_name_or_path,
|
402 |
+
subfolder="unet_encoder",
|
403 |
+
torch_dtype=torch.float16,
|
404 |
+
)
|
405 |
+
text_encoder_one = CLIPTextModel.from_pretrained(
|
406 |
+
args.pretrained_model_name_or_path,
|
407 |
+
subfolder="text_encoder",
|
408 |
+
torch_dtype=torch.float16,
|
409 |
+
)
|
410 |
+
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
411 |
+
args.pretrained_model_name_or_path,
|
412 |
+
subfolder="text_encoder_2",
|
413 |
+
torch_dtype=torch.float16,
|
414 |
+
)
|
415 |
+
tokenizer_one = AutoTokenizer.from_pretrained(
|
416 |
+
args.pretrained_model_name_or_path,
|
417 |
+
subfolder="tokenizer",
|
418 |
+
revision=None,
|
419 |
+
use_fast=False,
|
420 |
+
)
|
421 |
+
tokenizer_two = AutoTokenizer.from_pretrained(
|
422 |
+
args.pretrained_model_name_or_path,
|
423 |
+
subfolder="tokenizer_2",
|
424 |
+
revision=None,
|
425 |
+
use_fast=False,
|
426 |
+
)
|
427 |
+
|
428 |
+
|
429 |
+
# Freeze vae and text_encoder and set unet to trainable
|
430 |
+
unet.requires_grad_(False)
|
431 |
+
vae.requires_grad_(False)
|
432 |
+
image_encoder.requires_grad_(False)
|
433 |
+
UNet_Encoder.requires_grad_(False)
|
434 |
+
text_encoder_one.requires_grad_(False)
|
435 |
+
text_encoder_two.requires_grad_(False)
|
436 |
+
UNet_Encoder.to(accelerator.device, weight_dtype)
|
437 |
+
unet.eval()
|
438 |
+
UNet_Encoder.eval()
|
439 |
+
|
440 |
+
|
441 |
+
|
442 |
+
if args.enable_xformers_memory_efficient_attention:
|
443 |
+
if is_xformers_available():
|
444 |
+
import xformers
|
445 |
+
|
446 |
+
xformers_version = version.parse(xformers.__version__)
|
447 |
+
if xformers_version == version.parse("0.0.16"):
|
448 |
+
logger.warn(
|
449 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
450 |
+
)
|
451 |
+
unet.enable_xformers_memory_efficient_attention()
|
452 |
+
else:
|
453 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
454 |
+
|
455 |
+
test_dataset = DresscodeTestDataset(
|
456 |
+
dataroot_path=args.data_dir,
|
457 |
+
phase="test",
|
458 |
+
order="unpaired" if args.unpaired else "paired",
|
459 |
+
category = args.category,
|
460 |
+
size=(args.height, args.width),
|
461 |
+
)
|
462 |
+
test_dataloader = torch.utils.data.DataLoader(
|
463 |
+
test_dataset,
|
464 |
+
shuffle=False,
|
465 |
+
batch_size=args.test_batch_size,
|
466 |
+
num_workers=4,
|
467 |
+
)
|
468 |
+
|
469 |
+
pipe = TryonPipeline.from_pretrained(
|
470 |
+
args.pretrained_model_name_or_path,
|
471 |
+
unet=unet,
|
472 |
+
vae=vae,
|
473 |
+
feature_extractor= CLIPImageProcessor(),
|
474 |
+
text_encoder = text_encoder_one,
|
475 |
+
text_encoder_2 = text_encoder_two,
|
476 |
+
tokenizer = tokenizer_one,
|
477 |
+
tokenizer_2 = tokenizer_two,
|
478 |
+
scheduler = noise_scheduler,
|
479 |
+
image_encoder=image_encoder,
|
480 |
+
torch_dtype=torch.float16,
|
481 |
+
).to(accelerator.device)
|
482 |
+
pipe.unet_encoder = UNet_Encoder
|
483 |
+
|
484 |
+
# pipe.enable_sequential_cpu_offload()
|
485 |
+
# pipe.enable_model_cpu_offload()
|
486 |
+
# pipe.enable_vae_slicing()
|
487 |
+
|
488 |
+
|
489 |
+
|
490 |
+
with torch.no_grad():
|
491 |
+
# Extract the images
|
492 |
+
with torch.cuda.amp.autocast():
|
493 |
+
with torch.no_grad():
|
494 |
+
for sample in test_dataloader:
|
495 |
+
img_emb_list = []
|
496 |
+
for i in range(sample['cloth'].shape[0]):
|
497 |
+
img_emb_list.append(sample['cloth'][i])
|
498 |
+
|
499 |
+
prompt = sample["caption"]
|
500 |
+
|
501 |
+
num_prompts = sample['cloth'].shape[0]
|
502 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
503 |
+
|
504 |
+
if not isinstance(prompt, List):
|
505 |
+
prompt = [prompt] * num_prompts
|
506 |
+
if not isinstance(negative_prompt, List):
|
507 |
+
negative_prompt = [negative_prompt] * num_prompts
|
508 |
+
|
509 |
+
image_embeds = torch.cat(img_emb_list,dim=0)
|
510 |
+
|
511 |
+
with torch.inference_mode():
|
512 |
+
(
|
513 |
+
prompt_embeds,
|
514 |
+
negative_prompt_embeds,
|
515 |
+
pooled_prompt_embeds,
|
516 |
+
negative_pooled_prompt_embeds,
|
517 |
+
) = pipe.encode_prompt(
|
518 |
+
prompt,
|
519 |
+
num_images_per_prompt=1,
|
520 |
+
do_classifier_free_guidance=True,
|
521 |
+
negative_prompt=negative_prompt,
|
522 |
+
)
|
523 |
+
|
524 |
+
|
525 |
+
prompt = sample["caption_cloth"]
|
526 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
527 |
+
|
528 |
+
if not isinstance(prompt, List):
|
529 |
+
prompt = [prompt] * num_prompts
|
530 |
+
if not isinstance(negative_prompt, List):
|
531 |
+
negative_prompt = [negative_prompt] * num_prompts
|
532 |
+
|
533 |
+
|
534 |
+
with torch.inference_mode():
|
535 |
+
(
|
536 |
+
prompt_embeds_c,
|
537 |
+
_,
|
538 |
+
_,
|
539 |
+
_,
|
540 |
+
) = pipe.encode_prompt(
|
541 |
+
prompt,
|
542 |
+
num_images_per_prompt=1,
|
543 |
+
do_classifier_free_guidance=False,
|
544 |
+
negative_prompt=negative_prompt,
|
545 |
+
)
|
546 |
+
|
547 |
+
|
548 |
+
|
549 |
+
generator = torch.Generator(pipe.device).manual_seed(args.seed) if args.seed is not None else None
|
550 |
+
images = pipe(
|
551 |
+
prompt_embeds=prompt_embeds,
|
552 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
553 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
554 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
555 |
+
num_inference_steps=args.num_inference_steps,
|
556 |
+
generator=generator,
|
557 |
+
strength = 1.0,
|
558 |
+
pose_img = sample['pose_img'],
|
559 |
+
text_embeds_cloth=prompt_embeds_c,
|
560 |
+
cloth = sample["cloth_pure"].to(accelerator.device),
|
561 |
+
mask_image=sample['inpaint_mask'],
|
562 |
+
image=(sample['image']+1.0)/2.0,
|
563 |
+
height=args.height,
|
564 |
+
width=args.width,
|
565 |
+
guidance_scale=args.guidance_scale,
|
566 |
+
ip_adapter_image = image_embeds,
|
567 |
+
)[0]
|
568 |
+
|
569 |
+
|
570 |
+
for i in range(len(images)):
|
571 |
+
x_sample = pil_to_tensor(images[i])
|
572 |
+
torchvision.utils.save_image(x_sample,os.path.join(args.output_dir,sample['im_name'][i]))
|
573 |
+
|
574 |
+
|
575 |
+
|
576 |
+
|
577 |
+
if __name__ == "__main__":
|
578 |
+
main()
|
vitonhd_test_tagged.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|