Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer | |
from huggingface_hub import HfApi | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
import os | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
def count_tokens(model_id, text): | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) | |
tokens = tokenizer.encode(text) | |
token_count = len(tokens) | |
return f"Number of tokens: {token_count}" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
with gr.Blocks() as iface: | |
gr.Markdown("# Universal Tokenizer - Token Counter") | |
gr.Markdown("This app counts the number of tokens in the provided text using any tokenizer from a Hugging Face model.") | |
model_id = HuggingfaceHubSearch( | |
label="Select a model repo with a tokenizer", | |
placeholder="Search for a model on Hugging Face", | |
search_type="model", | |
) | |
text_input = gr.Textbox(lines=5, placeholder="Enter your text here...") | |
output = gr.Textbox(label="Result") | |
btn = gr.Button("Count Tokens") | |
btn.click(fn=count_tokens, inputs=[model_id, text_input], outputs=output) | |
iface.launch() |