import os import glob import sys import argparse import logging import json import subprocess import numpy as np from scipy.io.wavfile import read import torch import regex as re MATPLOTLIB_FLAG = False logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging zh_pattern = re.compile(r'[\u4e00-\u9fa5]') en_pattern = re.compile(r'[a-zA-Z]') jp_pattern = re.compile(r'[\u3040-\u30ff\u31f0-\u31ff]') kr_pattern = re.compile(r'[\uac00-\ud7af\u1100-\u11ff\u3130-\u318f\ua960-\ua97f]') num_pattern=re.compile(r'[0-9]') comma=r"(?<=[.。!!??;;,,、::'\"‘“”’()()《》「」~——])" #向前匹配但固定长度 tags={'ZH':'[ZH]','EN':'[EN]','JP':'[JA]','KR':'[KR]'} def tag_cjke(text): '''为中英日韩加tag,中日正则分不开,故先分句分离中日再识别,以应对大部分情况''' sentences = re.split(r"([.。!!??;;,,、::'\"‘“”’()()【】《》「」~——]+ *(?![0-9]))", text) #分句,排除小数点 sentences.append("") sentences = ["".join(i) for i in zip(sentences[0::2],sentences[1::2])] # print(sentences) prev_lang=None tagged_text = "" for s in sentences: #全为符号跳过 nu = re.sub(r'[\s\p{P}]+', '', s, flags=re.U).strip() if len(nu)==0: continue s = re.sub(r'[()()《》「」【】‘“”’]+', '', s) jp=re.findall(jp_pattern, s) #本句含日语字符判断为日语 if len(jp)>0: prev_lang,tagged_jke=tag_jke(s,prev_lang) tagged_text +=tagged_jke else: prev_lang,tagged_cke=tag_cke(s,prev_lang) tagged_text +=tagged_cke return tagged_text def tag_jke(text,prev_sentence=None): '''为英日韩加tag''' # 初始化标记变量 tagged_text = "" prev_lang = None tagged=0 # 遍历文本 for char in text: # 判断当前字符属于哪种语言 if jp_pattern.match(char): lang = "JP" elif zh_pattern.match(char): lang = "JP" elif kr_pattern.match(char): lang = "KR" elif en_pattern.match(char): lang = "EN" # elif num_pattern.match(char): # lang = prev_sentence else: lang = None tagged_text += char continue # 如果当前语言与上一个语言不同,就添加标记 if lang != prev_lang: tagged=1 if prev_lang==None: # 开头 tagged_text =tags[lang]+tagged_text else: tagged_text =tagged_text+tags[prev_lang]+tags[lang] # 重置标记变量 prev_lang = lang # 添加当前字符到标记文本中 tagged_text += char # 在最后一个语言的结尾添加对应的标记 if prev_lang: tagged_text += tags[prev_lang] if not tagged: prev_lang=prev_sentence tagged_text =tags[prev_lang]+tagged_text+tags[prev_lang] return prev_lang,tagged_text def tag_cke(text,prev_sentence=None): '''为中英韩加tag''' # 初始化标记变量 tagged_text = "" prev_lang = None # 是否全略过未标签 tagged=0 # 遍历文本 for char in text: # 判断当前字符属于哪种语言 if zh_pattern.match(char): lang = "ZH" elif kr_pattern.match(char): lang = "KR" elif en_pattern.match(char): lang = "EN" # elif num_pattern.match(char): # lang = prev_sentence else: # 略过 lang = None tagged_text += char continue # 如果当前语言与上一个语言不同,添加标记 if lang != prev_lang: tagged=1 if prev_lang==None: # 开头 tagged_text =tags[lang]+tagged_text else: tagged_text =tagged_text+tags[prev_lang]+tags[lang] # 重置标记变量 prev_lang = lang # 添加当前字符到标记文本中 tagged_text += char # 在最后一个语言的结尾添加对应的标记 if prev_lang: tagged_text += tags[prev_lang] # 未标签则继承上一句标签 if tagged==0: prev_lang=prev_sentence tagged_text =tags[prev_lang]+tagged_text+tags[prev_lang] return prev_lang,tagged_text def load_checkpoint(checkpoint_path, model, optimizer=None, drop_speaker_emb=False): assert os.path.isfile(checkpoint_path) checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') iteration = checkpoint_dict['iteration'] learning_rate = checkpoint_dict['learning_rate'] if optimizer is not None: optimizer.load_state_dict(checkpoint_dict['optimizer']) saved_state_dict = checkpoint_dict['model'] if hasattr(model, 'module'): state_dict = model.module.state_dict() else: state_dict = model.state_dict() new_state_dict = {} for k, v in state_dict.items(): try: if k == 'emb_g.weight': if drop_speaker_emb: new_state_dict[k] = v continue v[:saved_state_dict[k].shape[0], :] = saved_state_dict[k] new_state_dict[k] = v else: new_state_dict[k] = saved_state_dict[k] except: logger.info("%s is not in the checkpoint" % k) new_state_dict[k] = v if hasattr(model, 'module'): model.module.load_state_dict(new_state_dict) else: model.load_state_dict(new_state_dict) logger.info("Loaded checkpoint '{}' (iteration {})".format( checkpoint_path, iteration)) return model, optimizer, learning_rate, iteration def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): logger.info("Saving model and optimizer state at iteration {} to {}".format( iteration, checkpoint_path)) if hasattr(model, 'module'): state_dict = model.module.state_dict() else: state_dict = model.state_dict() torch.save({'model': state_dict, 'iteration': iteration, 'optimizer': optimizer.state_dict() if optimizer is not None else None, 'learning_rate': learning_rate}, checkpoint_path) def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050): for k, v in scalars.items(): writer.add_scalar(k, v, global_step) for k, v in histograms.items(): writer.add_histogram(k, v, global_step) for k, v in images.items(): writer.add_image(k, v, global_step, dataformats='HWC') for k, v in audios.items(): writer.add_audio(k, v, global_step, audio_sampling_rate) def extract_digits(f): digits = "".join(filter(str.isdigit, f)) return int(digits) if digits else -1 def latest_checkpoint_path(dir_path, regex="G_[0-9]*.pth"): f_list = glob.glob(os.path.join(dir_path, regex)) f_list.sort(key=lambda f: extract_digits(f)) x = f_list[-1] print(f"latest_checkpoint_path:{x}") return x def oldest_checkpoint_path(dir_path, regex="G_[0-9]*.pth", preserved=4): f_list = glob.glob(os.path.join(dir_path, regex)) f_list.sort(key=lambda f: extract_digits(f)) if len(f_list) > preserved: x = f_list[0] print(f"oldest_checkpoint_path:{x}") return x return "" def plot_spectrogram_to_numpy(spectrogram): global MATPLOTLIB_FLAG if not MATPLOTLIB_FLAG: import matplotlib matplotlib.use("Agg") MATPLOTLIB_FLAG = True mpl_logger = logging.getLogger('matplotlib') mpl_logger.setLevel(logging.WARNING) import matplotlib.pylab as plt import numpy as np fig, ax = plt.subplots(figsize=(10, 2)) im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation='none') plt.colorbar(im, ax=ax) plt.xlabel("Frames") plt.ylabel("Channels") plt.tight_layout() fig.canvas.draw() data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) plt.close() return data def plot_alignment_to_numpy(alignment, info=None): global MATPLOTLIB_FLAG if not MATPLOTLIB_FLAG: import matplotlib matplotlib.use("Agg") MATPLOTLIB_FLAG = True mpl_logger = logging.getLogger('matplotlib') mpl_logger.setLevel(logging.WARNING) import matplotlib.pylab as plt import numpy as np fig, ax = plt.subplots(figsize=(6, 4)) im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower', interpolation='none') fig.colorbar(im, ax=ax) xlabel = 'Decoder timestep' if info is not None: xlabel += '\n\n' + info plt.xlabel(xlabel) plt.ylabel('Encoder timestep') plt.tight_layout() fig.canvas.draw() data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) plt.close() return data def load_wav_to_torch(full_path): sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def load_filepaths_and_text(filename, split="|"): with open(filename, encoding='utf-8') as f: filepaths_and_text = [line.strip().split(split) for line in f] return filepaths_and_text def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def get_hparams(init=True): parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, default="./configs/modified_finetune_speaker.json", help='JSON file for configuration') parser.add_argument('-m', '--model', type=str, default="pretrained_models", help='Model name') parser.add_argument('-n', '--max_epochs', type=int, default=50, help='finetune epochs') parser.add_argument('--cont', type=str2bool, default=False, help='whether to continue training on the latest checkpoint') parser.add_argument('--drop_speaker_embed', type=str2bool, default=False, help='whether to drop existing characters') parser.add_argument('--train_with_pretrained_model', type=str2bool, default=True, help='whether to train with pretrained model') parser.add_argument('--preserved', type=int, default=4, help='Number of preserved models') args = parser.parse_args() model_dir = os.path.join("./", args.model) if not os.path.exists(model_dir): os.makedirs(model_dir) config_path = args.config config_save_path = os.path.join(model_dir, "config.json") if init: with open(config_path, "r") as f: data = f.read() with open(config_save_path, "w") as f: f.write(data) else: with open(config_save_path, "r") as f: data = f.read() config = json.loads(data) hparams = HParams(**config) hparams.model_dir = model_dir hparams.max_epochs = args.max_epochs hparams.cont = args.cont hparams.drop_speaker_embed = args.drop_speaker_embed hparams.train_with_pretrained_model = args.train_with_pretrained_model hparams.preserved = args.preserved return hparams def get_hparams_from_dir(model_dir): config_save_path = os.path.join(model_dir, "config.json") with open(config_save_path, "r") as f: data = f.read() config = json.loads(data) hparams = HParams(**config) hparams.model_dir = model_dir return hparams def get_hparams_from_file(config_path): with open(config_path, "r", encoding="utf-8") as f: data = f.read() config = json.loads(data) hparams = HParams(**config) return hparams def check_git_hash(model_dir): source_dir = os.path.dirname(os.path.realpath(__file__)) if not os.path.exists(os.path.join(source_dir, ".git")): logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format( source_dir )) return cur_hash = subprocess.getoutput("git rev-parse HEAD") path = os.path.join(model_dir, "githash") if os.path.exists(path): saved_hash = open(path).read() if saved_hash != cur_hash: logger.warn("git hash values are different. {}(saved) != {}(current)".format( saved_hash[:8], cur_hash[:8])) else: open(path, "w").write(cur_hash) def get_logger(model_dir, filename="train.log"): global logger logger = logging.getLogger(os.path.basename(model_dir)) logger.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") if not os.path.exists(model_dir): os.makedirs(model_dir) h = logging.FileHandler(os.path.join(model_dir, filename)) h.setLevel(logging.DEBUG) h.setFormatter(formatter) logger.addHandler(h) return logger class HParams(): def __init__(self, **kwargs): for k, v in kwargs.items(): if type(v) == dict: v = HParams(**v) self[k] = v def keys(self): return self.__dict__.keys() def items(self): return self.__dict__.items() def values(self): return self.__dict__.values() def __len__(self): return len(self.__dict__) def __getitem__(self, key): return getattr(self, key) def __setitem__(self, key, value): return setattr(self, key, value) def __contains__(self, key): return key in self.__dict__ def __repr__(self): return self.__dict__.__repr__()