|
"""该模块用于生成VITS文件 |
|
使用方法 |
|
|
|
python cmd_inference.py -m 模型路径 -c 配置文件路径 -o 输出文件路径 -l 输入的语言 -t 输入文本 -s 合成目标说话人名称 |
|
|
|
可选参数 |
|
-ns 感情变化程度 |
|
-nsw 音素发音长度 |
|
-ls 整体语速 |
|
-on 输出文件的名称 |
|
|
|
""" |
|
|
|
from pathlib import Path |
|
import utils |
|
from models import SynthesizerTrn |
|
import torch |
|
from torch import no_grad, LongTensor |
|
import librosa |
|
from text import text_to_sequence, _clean_text |
|
import commons |
|
import scipy.io.wavfile as wavf |
|
import os |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
language_marks = { |
|
"Japanese": "", |
|
"日本語": "[JA]", |
|
"简体中文": "[ZH]", |
|
"English": "[EN]", |
|
"Mix": "", |
|
} |
|
|
|
|
|
def get_text(text, hps, is_symbol): |
|
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners) |
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = LongTensor(text_norm) |
|
return text_norm |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser(description='vits inference') |
|
|
|
parser.add_argument('-m', '--model_path', type=str, default="logs/44k/G_0.pth", help='模型路径') |
|
parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", help='配置文件路径') |
|
parser.add_argument('-o', '--output_path', type=str, default="output/vits", help='输出文件路径') |
|
parser.add_argument('-l', '--language', type=str, default="日本語", help='输入的语言') |
|
parser.add_argument('-t', '--text', type=str, help='输入文本') |
|
parser.add_argument('-s', '--spk', type=str, help='合成目标说话人名称') |
|
|
|
parser.add_argument('-on', '--output_name', type=str, default="output", help='输出文件的名称') |
|
parser.add_argument('-ns', '--noise_scale', type=float,default= .667,help='感情变化程度') |
|
parser.add_argument('-nsw', '--noise_scale_w', type=float,default=0.6, help='音素发音长度') |
|
parser.add_argument('-ls', '--length_scale', type=float,default=1, help='整体语速') |
|
|
|
args = parser.parse_args() |
|
|
|
model_path = args.model_path |
|
config_path = args.config_path |
|
output_dir = Path(args.output_path) |
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
language = args.language |
|
text = args.text |
|
spk = args.spk |
|
noise_scale = args.noise_scale |
|
noise_scale_w = args.noise_scale_w |
|
length = args.length_scale |
|
output_name = args.output_name |
|
|
|
hps = utils.get_hparams_from_file(config_path) |
|
net_g = SynthesizerTrn( |
|
len(hps.symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model).to(device) |
|
_ = net_g.eval() |
|
_ = utils.load_checkpoint(model_path, net_g, None) |
|
|
|
speaker_ids = hps.speakers |
|
|
|
|
|
if language is not None: |
|
text = language_marks[language] + text + language_marks[language] |
|
speaker_id = speaker_ids[spk] |
|
stn_tst = get_text(text, hps, False) |
|
with no_grad(): |
|
x_tst = stn_tst.unsqueeze(0).to(device) |
|
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device) |
|
sid = LongTensor([speaker_id]).to(device) |
|
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, |
|
length_scale=1.0 / length)[0][0, 0].data.cpu().float().numpy() |
|
del stn_tst, x_tst, x_tst_lengths, sid |
|
|
|
wavf.write(str(output_dir)+"/"+output_name+".wav",hps.data.sampling_rate,audio) |
|
|
|
|
|
|
|
|