qychen's picture
Duplicate from silk-road/luotuo-embedding-lyrics-analysis
93d8765
import gradio as gr
from scipy.spatial.distance import cosine
from transformers import AutoModel, AutoTokenizer
from argparse import Namespace
import torch
from tsne import TSNE_Plot
tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert")
model_args = Namespace(do_mlm=None,
pooler_type="cls",
temp=0.05,
mlp_only_train=False,
init_embeddings_model=None)
model = AutoModel.from_pretrained("silk-road/luotuo-bert",
trust_remote_code=True,
model_args=model_args)
def divide_str(s, sep=['\n', '.', '。']):
mid_len = len(s) // 2 # 中心点位置
best_sep_pos = len(s) + 1 # 最接近中心点的分隔符位置
best_sep = None # 最接近中心点的分隔符
for curr_sep in sep:
sep_pos = s.rfind(curr_sep, 0, mid_len) # 从中心点往左找分隔符
if sep_pos > 0 and abs(sep_pos - mid_len) < abs(best_sep_pos - mid_len):
best_sep_pos = sep_pos
best_sep = curr_sep
if not best_sep: # 没有找到分隔符
return s, ''
return s[:best_sep_pos + 1], s[best_sep_pos + 1:]
def strong_divide( s ):
left, right = divide_str(s)
if right != '':
return left, right
whole_sep = ['\n', '.', ',', '、', ';', ',', ';',\
':', '!', '?', '(', ')', '”', '“', \
'’', '‘', '[', ']', '{', '}', '<', '>', \
'/', '''\''', '|', '-', '=', '+', '*', '%', \
'$', '''#''', '@', '&', '^', '_', '`', '~',\
'·', '…']
left, right = divide_str(s, sep = whole_sep )
if right != '':
return left, right
mid_len = len(s) // 2
return s[:mid_len], s[mid_len:]
def generate_image(text_input):
# 将输入的文本按行分割并保存到列表中
text_input = text_input.split('\n')
label = []
for idx, i in enumerate(text_input):
if '#' in i:
label.append(i[i.find('#') + 1:])
text_input[idx] = i[:i.find('#')]
else:
label.append('No.{}'.format(idx))
divided_text = [strong_divide(i) for i in text_input]
text_left, text_right = [i[0] for i in divided_text], [i[1] for i in divided_text]
inputs = tokenizer(text_left, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
embeddings_left = model(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output
inputs = tokenizer(text_right, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
embeddings_right = model(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output
merged_list = text_left + text_right
merged_embed = torch.cat((embeddings_left, embeddings_right), dim=0)
tsne_plot = TSNE_Plot(merged_list, merged_embed, label=label * 2, n_annotation_positions=len(merged_list))
fig = tsne_plot.tsne_plot(n_sentence=len(merged_list), return_fig=True)
return fig
with gr.Blocks() as demo:
name = gr.inputs.Textbox(lines=20,
placeholder='在此输入歌词,每一行为一个输入,如果需要输入歌词对应的歌名,请用#隔开\n例如:听雷声 滚滚 他默默 闭紧嘴唇 停止吟唱暮色与想念 他此刻沉痛而危险 听雷声 滚滚 他渐渐 感到胸闷 乌云阻拦明月涌河湾 他起身独立向荒原#河北墨麒麟')
output = gr.Plot()
btn = gr.Button("Generate")
btn.click(fn=generate_image, inputs=name, outputs=output, api_name="generate-image")
demo.launch(debug=True)