Spaces:
Runtime error
Runtime error
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer | |
huggingface_token = os.getenv('read_access') | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model_id = "google/gemma-2-9b-it" | |
tokenizer = GemmaTokenizerFast.from_pretrained(model_id, token = huggingface_token) | |
quantization = BitsAndBytesConfig(load_in_4bit= True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
quantization_config=quantization, | |
token = huggingface_token | |
) | |
model.config.sliding_window = 4096 | |
model.eval() | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
conversation = [] | |
for user, assistant in chat_history: | |
conversation.extend( | |
[ | |
{"role": "user", "content": user}, | |
{"role": "assistant", "content": assistant}, | |
] | |
) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
chatbot=gr.Chatbot(height=500, label = "日本語アシスタント", show_label=True), | |
textbox=gr.Textbox(placeholder="メッセージを入力してください", container=False, scale=7), | |
additional_inputs=[ | |
gr.Slider( | |
label="テキスト作成時の最大単語数", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="創造", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.2, | |
), | |
gr.Slider( | |
label="最も確率の高い単語のグループ", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
), | |
gr.Slider( | |
label="上位の単語の確率が最も高い(top-k)", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
), | |
gr.Slider( | |
label="懲罰を繰り返す", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.1, | |
), | |
], | |
theme="soft", | |
stop_btn=None, | |
examples = [ | |
["寿司の作り方"], | |
["美しい着物ドレスの選び方"], | |
["地震が起きたらどうするか"], | |
["どうすれば幸せに生きられるか"], | |
["魚を食べることの利点"], | |
["グループで効果的に作業する方法"] | |
], | |
cache_examples=False, | |
title = "日本語アシスタント", | |
clear_btn="🗑️ 消す", | |
undo_btn="↩️ 元に戻す", | |
submit_btn="🚀 送信", | |
retry_btn="🔄 リトライ", | |
additional_inputs_accordion="高度なカスタマイズ", | |
) | |
if __name__ == "__main__": | |
chat_interface.queue(max_size=20).launch() |