Lam-Hung's picture
Update app.py
d533c0e verified
raw
history blame
4.28 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer
huggingface_token = os.getenv('read_access')
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "google/gemma-2-9b-it"
tokenizer = GemmaTokenizerFast.from_pretrained(model_id, token = huggingface_token)
quantization = BitsAndBytesConfig(load_in_4bit= True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=quantization,
token = huggingface_token
)
model.config.sliding_window = 4096
model.eval()
@spaces.GPU(duration=90)
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
for user, assistant in chat_history:
conversation.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(height=500, label = "日本語アシスタント", show_label=True),
textbox=gr.Textbox(placeholder="メッセージを入力してください", container=False, scale=7),
additional_inputs=[
gr.Slider(
label="テキスト作成時の最大単語数",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="創造",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.2,
),
gr.Slider(
label="最も確率の高い単語のグループ",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="上位の単語の確率が最も高い(top-k)",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="懲罰を繰り返す",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.1,
),
],
theme="soft",
stop_btn=None,
examples = [
["寿司の作り方"],
["美しい着物ドレスの選び方"],
["地震が起きたらどうするか"],
["どうすれば幸せに生きられるか"],
["魚を食べることの利点"],
["グループで効果的に作業する方法"]
],
cache_examples=False,
title = "日本語アシスタント",
clear_btn="🗑️ 消す",
undo_btn="↩️ 元に戻す",
submit_btn="🚀 送信",
retry_btn="🔄 リトライ",
additional_inputs_accordion="高度なカスタマイズ",
)
if __name__ == "__main__":
chat_interface.queue(max_size=20).launch()