File size: 8,784 Bytes
1f3e32f
f5ca5c5
 
 
 
 
0ba3807
f5ca5c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
095bf58
367aec6
f5ca5c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
095bf58
367aec6
f5ca5c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
095bf58
367aec6
f5ca5c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0173054
f5ca5c5
 
 
 
 
 
 
36bf73a
 
 
f5ca5c5
 
 
 
 
 
 
39c26b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import spaces
import torch
import numpy as np
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
import natten
import gradio as gr
from PIL import Image


"""
IMPORT MODEL
"""

#model generate depth image
depth_image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-large-hf", torch_dtype=torch.float16)
depth_model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-large-hf", torch_dtype=torch.float16)
depth_model = depth_model.cuda()

#model generate segment image
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation

processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_dinat_large")
model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ade20k_dinat_large")
model = model.cuda()

#model generate image

#load depth controlnet, segmentation controlnet
controlnets = [
    ControlNetModel.from_pretrained("Lam-Hung/controlnet_depth_interior", torch_dtype=torch.float16, use_safetensors=True),
    ControlNetModel.from_pretrained("Lam-Hung/controlnet_segment_interior", torch_dtype=torch.float16, use_safetensors=True)
]
#load stable diffusion 1.5 and controlnets
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet= controlnets, torch_dtype=torch.float16, use_safetensors=True
)
# take UniPCMultistepScheduler for faster inference
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline.load_lora_weights('Lam-Hung/controlnet_lora_interior', weight_name= "pytorch_lora_weights.safetensors", adapter_name="interior")
pipeline.to("cuda")



"""
IMPORT FUNCTION
"""
def ade_palette() -> list[list[int]]:
    """ADE20K palette that maps each class to RGB values."""
    return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
            [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
            [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
            [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
            [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
            [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
            [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
            [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
            [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
            [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
            [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
            [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
            [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
            [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
            [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
            [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
            [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
            [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
            [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
            [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
            [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
            [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
            [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
            [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
            [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
            [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
            [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
            [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
            [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
            [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
            [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
            [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
            [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
            [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
            [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
            [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
            [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
            [102, 255, 0], [92, 0, 255]]


@torch.inference_mode()
@spaces.GPU
def get_depth_image(image: Image) -> Image:

    """
    create depth image
    """

    image_to_depth = depth_image_processor(images=image, return_tensors="pt").to("cuda")
    with torch.no_grad():
        depth_map = depth_model(**image_to_depth).predicted_depth

    width, height = image.size
    depth_map = torch.nn.functional.interpolate(
        depth_map.unsqueeze(1).float(),
        size=(height, width),
        mode="bicubic",
        align_corners=False,
    )
    depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_map = (depth_map - depth_min) / (depth_max - depth_min)
    image = torch.cat([depth_map] * 3, dim=1)

    image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
    image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
    return image

@torch.inference_mode()
@spaces.GPU
def get_segmentation_of_room(image: Image):
#-> tuple[np.ndarray, Image]:

    """
    create instance segmentation image
    """

    # Semantic Segmentation
    with torch.inference_mode():
        semantic_inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt")
        semantic_inputs = {key: value.to("cuda") for key, value in semantic_inputs.items()}
        semantic_outputs = model(**semantic_inputs)
        # pass through image_processor for postprocessing
        predicted_semantic_map = \
        processor.post_process_semantic_segmentation(semantic_outputs, target_sizes=[image.size[::-1]])[0]

    predicted_semantic_map = predicted_semantic_map.cpu()
    color_seg = np.zeros((predicted_semantic_map.shape[0], predicted_semantic_map.shape[1], 3), dtype=np.uint8)

    palette = np.array(ade_palette())
    for label, color in enumerate(palette):
        color_seg[predicted_semantic_map == label, :] = color

    color_seg = color_seg.astype(np.uint8)
    seg_image = Image.fromarray(color_seg).convert('RGB')
    return seg_image

@torch.inference_mode()
@spaces.GPU
def interior_inference(image, 
                       prompt, 
                       negative_prompt="window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner",
                       num_inference_steps=25, 
                       depth_weight=0.9, 
                       segment_weight=0.9, 
                       lora_weight=0.7,
                       seed= 123):

    depth_image = get_depth_image(image)
    segmentation_image = get_segmentation_of_room(image)
    prompt = prompt + " interior design, 4K, high resolution, photorealistic"

    image_interior = pipeline(
        prompt,
        negative_prompt = negative_prompt,
        image = [depth_image, segmentation_image],
        num_inference_steps = num_inference_steps,
        generator = torch.manual_seed(seed),

        #lora_scale if enable_lora
        cross_attention_kwargs={"scale": lora_weight},
        controlnet_conditioning_scale=[depth_weight, segment_weight],
        ).images[0]
    
    return image_interior

interface = gr.Interface(
    fn = interior_inference,
    inputs = [
        gr.Image(type = "pil", label = "Empty room image", show_label = True),
        gr.Textbox(label = "Enter your prompt", lines = 3, placeholder = "Enter your prompt here"),
    ],
    outputs=[
        gr.Image(type = "pil", label = "Interior design", show_label = True),
    ],
    additional_inputs=[
        gr.Textbox(label = "Negative prompt", lines = 3, placeholder = "Enter your negative prompt here"),
        gr.Slider(label = "Number of inference steps", minimum = 1, maximum = 100, value = 25, step = 1),
        gr.Slider(label = "Depth weight", minimum = 0, maximum = 1, value = 0.9, step = 0.01),
        gr.Slider(label = "Segment weight", minimum = 0, maximum = 1, value = 0.9, step = 0.01),
        gr.Slider(label = "Lora weight", minimum = 0, maximum = 1, value = 0.7, step = 0.01),
        gr.Number(label = "Seed", value = 123),
    ],
    title="INTERIOR DESIGN",
    description="**We will design your empty room become the beautiful room",
)

if "__name__" =="__main__":
    interface.launch()