Spaces:
Running
on
Zero
Running
on
Zero
# coding: utf-8 | |
import gradio as gr | |
import numpy as np | |
import os.path as osp | |
from typing import List, Union, Tuple | |
from dataclasses import dataclass, field | |
import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) | |
from .landmark_runner import LandmarkRunner | |
from .face_analysis_diy import FaceAnalysisDIY | |
from .helper import prefix | |
from .crop import crop_image, crop_image_by_bbox, parse_bbox_from_landmark, average_bbox_lst | |
from .timer import Timer | |
from .rprint import rlog as log | |
from .io import load_image_rgb | |
from .video import VideoWriter, get_fps, change_video_fps | |
def make_abs_path(fn): | |
return osp.join(osp.dirname(osp.realpath(__file__)), fn) | |
class Trajectory: | |
start: int = -1 # 起始帧 闭区间 | |
end: int = -1 # 结束帧 闭区间 | |
lmk_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # lmk list | |
bbox_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # bbox list | |
frame_rgb_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # frame list | |
frame_rgb_crop_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # frame crop list | |
class Cropper(object): | |
def __init__(self, **kwargs) -> None: | |
device_id = kwargs.get('device_id', 0) | |
self.landmark_runner = LandmarkRunner( | |
ckpt_path=make_abs_path('../../pretrained_weights/liveportrait/landmark.onnx'), | |
onnx_provider='cpu', | |
device_id=device_id | |
) | |
self.landmark_runner.warmup() | |
self.face_analysis_wrapper = FaceAnalysisDIY( | |
name='buffalo_l', | |
root=make_abs_path('../../pretrained_weights/insightface'), | |
providers=["CPUExecutionProvider"] | |
) | |
self.face_analysis_wrapper.prepare(ctx_id=device_id, det_size=(512, 512)) | |
self.face_analysis_wrapper.warmup() | |
self.crop_cfg = kwargs.get('crop_cfg', None) | |
def update_config(self, user_args): | |
for k, v in user_args.items(): | |
if hasattr(self.crop_cfg, k): | |
setattr(self.crop_cfg, k, v) | |
def crop_single_image(self, obj, **kwargs): | |
direction = kwargs.get('direction', 'large-small') | |
# crop and align a single image | |
if isinstance(obj, str): | |
img_rgb = load_image_rgb(obj) | |
elif isinstance(obj, np.ndarray): | |
img_rgb = obj | |
src_face = self.face_analysis_wrapper.get( | |
img_rgb, | |
flag_do_landmark_2d_106=True, | |
direction=direction | |
) | |
if len(src_face) == 0: | |
log('No face detected in the source image.') | |
raise gr.Error("No face detected in the source image 💥!", duration=5) | |
raise Exception("No face detected in the source image!") | |
elif len(src_face) > 1: | |
log(f'More than one face detected in the image, only pick one face by rule {direction}.') | |
src_face = src_face[0] | |
pts = src_face.landmark_2d_106 | |
# crop the face | |
ret_dct = crop_image( | |
img_rgb, # ndarray | |
pts, # 106x2 or Nx2 | |
dsize=kwargs.get('dsize', 512), | |
scale=kwargs.get('scale', 2.3), | |
vy_ratio=kwargs.get('vy_ratio', -0.15), | |
) | |
# update a 256x256 version for network input or else | |
ret_dct['img_crop_256x256'] = cv2.resize(ret_dct['img_crop'], (256, 256), interpolation=cv2.INTER_AREA) | |
ret_dct['pt_crop_256x256'] = ret_dct['pt_crop'] * 256 / kwargs.get('dsize', 512) | |
recon_ret = self.landmark_runner.run(img_rgb, pts) | |
lmk = recon_ret['pts'] | |
ret_dct['lmk_crop'] = lmk | |
return ret_dct | |
def get_retargeting_lmk_info(self, driving_rgb_lst): | |
# TODO: implement a tracking-based version | |
driving_lmk_lst = [] | |
for driving_image in driving_rgb_lst: | |
ret_dct = self.crop_single_image(driving_image) | |
driving_lmk_lst.append(ret_dct['lmk_crop']) | |
return driving_lmk_lst | |
def make_video_clip(self, driving_rgb_lst, output_path, output_fps=30, **kwargs): | |
trajectory = Trajectory() | |
direction = kwargs.get('direction', 'large-small') | |
for idx, driving_image in enumerate(driving_rgb_lst): | |
if idx == 0 or trajectory.start == -1: | |
src_face = self.face_analysis_wrapper.get( | |
driving_image, | |
flag_do_landmark_2d_106=True, | |
direction=direction | |
) | |
if len(src_face) == 0: | |
# No face detected in the driving_image | |
continue | |
elif len(src_face) > 1: | |
log(f'More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}.') | |
src_face = src_face[0] | |
pts = src_face.landmark_2d_106 | |
lmk_203 = self.landmark_runner(driving_image, pts)['pts'] | |
trajectory.start, trajectory.end = idx, idx | |
else: | |
lmk_203 = self.face_recon_wrapper(driving_image, trajectory.lmk_lst[-1])['pts'] | |
trajectory.end = idx | |
trajectory.lmk_lst.append(lmk_203) | |
ret_bbox = parse_bbox_from_landmark(lmk_203, scale=self.crop_cfg.globalscale, vy_ratio=elf.crop_cfg.vy_ratio)['bbox'] | |
bbox = [ret_bbox[0, 0], ret_bbox[0, 1], ret_bbox[2, 0], ret_bbox[2, 1]] # 4, | |
trajectory.bbox_lst.append(bbox) # bbox | |
trajectory.frame_rgb_lst.append(driving_image) | |
global_bbox = average_bbox_lst(trajectory.bbox_lst) | |
for idx, (frame_rgb, lmk) in enumerate(zip(trajectory.frame_rgb_lst, trajectory.lmk_lst)): | |
ret_dct = crop_image_by_bbox( | |
frame_rgb, global_bbox, lmk=lmk, | |
dsize=self.video_crop_cfg.dsize, flag_rot=self.video_crop_cfg.flag_rot, borderValue=self.video_crop_cfg.borderValue | |
) | |
frame_rgb_crop = ret_dct['img_crop'] | |