Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,813 Bytes
a891a57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
"""
Functions to compute distance ratios between specific pairs of facial landmarks
"""
import numpy as np
def calculate_distance_ratio(lmk: np.ndarray, idx1: int, idx2: int, idx3: int, idx4: int, eps: float = 1e-6) -> np.ndarray:
"""
Calculate the ratio of the distance between two pairs of landmarks.
Parameters:
lmk (np.ndarray): Landmarks array of shape (B, N, 2).
idx1, idx2, idx3, idx4 (int): Indices of the landmarks.
eps (float): Small value to avoid division by zero.
Returns:
np.ndarray: Calculated distance ratio.
"""
return (np.linalg.norm(lmk[:, idx1] - lmk[:, idx2], axis=1, keepdims=True) /
(np.linalg.norm(lmk[:, idx3] - lmk[:, idx4], axis=1, keepdims=True) + eps))
def calc_eye_close_ratio(lmk: np.ndarray, target_eye_ratio: np.ndarray = None) -> np.ndarray:
"""
Calculate the eye-close ratio for left and right eyes.
Parameters:
lmk (np.ndarray): Landmarks array of shape (B, N, 2).
target_eye_ratio (np.ndarray, optional): Additional target eye ratio array to include.
Returns:
np.ndarray: Concatenated eye-close ratios.
"""
lefteye_close_ratio = calculate_distance_ratio(lmk, 6, 18, 0, 12)
righteye_close_ratio = calculate_distance_ratio(lmk, 30, 42, 24, 36)
if target_eye_ratio is not None:
return np.concatenate([lefteye_close_ratio, righteye_close_ratio, target_eye_ratio], axis=1)
else:
return np.concatenate([lefteye_close_ratio, righteye_close_ratio], axis=1)
def calc_lip_close_ratio(lmk: np.ndarray) -> np.ndarray:
"""
Calculate the lip-close ratio.
Parameters:
lmk (np.ndarray): Landmarks array of shape (B, N, 2).
Returns:
np.ndarray: Calculated lip-close ratio.
"""
return calculate_distance_ratio(lmk, 90, 102, 48, 66)
|