import streamlit as st import os from streamlit_chat import message from datasets import load_dataset # dataset = load_dataset("wikipedia", "20220301.en", split="train[240000:250000]") # wikidata = [] # for record in dataset: # wikidata.append(record["text"]) # wikidata = list(set(wikidata)) # # print("\n".join(wikidata[:5])) # # print(len(wikidata)) from sentence_transformers import SentenceTransformer import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' if device != 'cuda': st.title(f"you are using {device}. This is much slower than using " "a CUDA-enabled GPU. If on colab you can chnage this by " "clicking Runtime > change runtime type > GPU.") model = SentenceTransformer("all-MiniLM-L6-v2", device=device) # Creating a Index(Pinecone Vector Database)