Spaces:
Runtime error
Runtime error
Kushwanth Chowday Kandala
commited on
Commit
•
c9dd21c
1
Parent(s):
dcca063
ImportError: cannot import name 'GRPCIndex' from 'pinecone'
Browse files
app.py
CHANGED
@@ -42,11 +42,13 @@ PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")
|
|
42 |
PINECONE_ENV=os.getenv("PINECONE_ENV")
|
43 |
PINECONE_ENVIRONMENT=os.getenv("PINECONE_ENVIRONMENT")
|
44 |
|
|
|
|
|
45 |
def connect_pinecone():
|
46 |
-
pinecone
|
47 |
st.code(pinecone)
|
48 |
st.divider()
|
49 |
-
st.text(pinecone.list_indexes())
|
50 |
st.divider()
|
51 |
st.text(f"Succesfully connected to the pinecone")
|
52 |
return pinecone
|
@@ -55,12 +57,13 @@ def get_pinecone_semantic_index(pinecone):
|
|
55 |
index_name = "sematic-search"
|
56 |
|
57 |
# only create if it deosnot exists
|
58 |
-
if index_name not in pinecone.list_indexes():
|
59 |
pinecone.create_index(
|
60 |
name=index_name,
|
61 |
description="Semantic search",
|
62 |
dimension=model.get_sentence_embedding_dimension(),
|
63 |
metric="cosine",
|
|
|
64 |
)
|
65 |
# now connect to index
|
66 |
index = PineconeGRPC(index_name)
|
|
|
42 |
PINECONE_ENV=os.getenv("PINECONE_ENV")
|
43 |
PINECONE_ENVIRONMENT=os.getenv("PINECONE_ENVIRONMENT")
|
44 |
|
45 |
+
pc = Pinecone( api_key=os.environ.get("PINECONE_API_KEY") ) # Now do stuff if 'my_index' not in pc.list_indexes().names(): pc.create_index( name='my_index', dimension=1536, metric='euclidean', spec=ServerlessSpec( cloud='aws', region='us-west-2' ) )
|
46 |
+
|
47 |
def connect_pinecone():
|
48 |
+
pinecone = Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
|
49 |
st.code(pinecone)
|
50 |
st.divider()
|
51 |
+
st.text(pinecone.list_indexes().names())
|
52 |
st.divider()
|
53 |
st.text(f"Succesfully connected to the pinecone")
|
54 |
return pinecone
|
|
|
57 |
index_name = "sematic-search"
|
58 |
|
59 |
# only create if it deosnot exists
|
60 |
+
if index_name not in pinecone.list_indexes().names():
|
61 |
pinecone.create_index(
|
62 |
name=index_name,
|
63 |
description="Semantic search",
|
64 |
dimension=model.get_sentence_embedding_dimension(),
|
65 |
metric="cosine",
|
66 |
+
spec=ServerlessSpec( cloud='gcp', region='us-central1' )
|
67 |
)
|
68 |
# now connect to index
|
69 |
index = PineconeGRPC(index_name)
|