Spaces:
Runtime error
Runtime error
Kushwanth Chowday Kandala
commited on
Commit
•
a78496d
1
Parent(s):
7c92df9
TypeError: Value must be iterable index.upsert(vectors=records)
Browse files
app.py
CHANGED
@@ -196,17 +196,20 @@ def create_embeddings():
|
|
196 |
pinecone = connect_pinecone()
|
197 |
index = get_pinecone_semantic_index(pinecone)
|
198 |
|
199 |
-
# The maximum metadata size per vector is 40KB ~ 40000Bytes ~ each text character is 1 to 2 bytes. so rougly given
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
202 |
# find end of batch
|
203 |
-
end = min(i + batch_size, len(
|
204 |
# create ids batch
|
205 |
ids = [str(i) for i in range(i, end)]
|
206 |
# create metadata batch
|
207 |
-
metadata = [{"text": text} for text in
|
208 |
# create embeddings
|
209 |
-
xc = model.encode(
|
210 |
# create records list for upsert
|
211 |
records = zip(ids, xc, metadata)
|
212 |
# upsert records
|
|
|
196 |
pinecone = connect_pinecone()
|
197 |
index = get_pinecone_semantic_index(pinecone)
|
198 |
|
199 |
+
# The maximum metadata size per vector is 40KB ~ 40000Bytes ~ each text character is 1 to 2 bytes. so rougly given chunk size of 10000 to 40000
|
200 |
+
chunk_size = 10000
|
201 |
+
batch_size = 2
|
202 |
+
chunks = split_into_chunks(inputtext, batch_size)
|
203 |
+
|
204 |
+
for i in tqdm(range(0, len(chunks), batch_size)):
|
205 |
# find end of batch
|
206 |
+
end = min(i + batch_size, len(chunks))
|
207 |
# create ids batch
|
208 |
ids = [str(i) for i in range(i, end)]
|
209 |
# create metadata batch
|
210 |
+
metadata = [{"text": text} for text in chunks[i:end]]
|
211 |
# create embeddings
|
212 |
+
xc = model.encode(chunks[i:end])
|
213 |
# create records list for upsert
|
214 |
records = zip(ids, xc, metadata)
|
215 |
# upsert records
|