KushwanthK commited on
Commit
33dd3d6
1 Parent(s): a695e9a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -6
app.py CHANGED
@@ -10,7 +10,9 @@ import math
10
  from transformers import pipeline
11
  from langchain.prompts import ChatPromptTemplate
12
  from langchain_community.llms import HuggingFaceHub
 
13
  import re
 
14
  # import json
15
 
16
  # st.config(PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION="python")
@@ -95,13 +97,36 @@ def prompt_engineer(text, longtext, query):
95
  BULLET POINT SUMMARY:
96
  """
97
  # Load the summarization pipeline with the specified model
98
- summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
99
 
100
  # Generate the prompt
101
- prompt = summary_prompt_template.format(text=text)
102
 
103
  # Generate the summary
104
- summary = summarizer(prompt, max_length=1024, min_length=50)[0]["summary_text"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
  with st.sidebar:
107
  st.divider()
@@ -130,9 +155,9 @@ def prompt_engineer(text, longtext, query):
130
  result = ""
131
 
132
  try:
133
- llm = HuggingFaceHub(
134
- repo_id="meta-llama/Meta-Llama-3-8B-Instruct", model_kwargs={"temperature": 0.1, "max_new_tokens": 256, "task":"text-generation"}
135
- )
136
  response_text = llm.invoke(prompt)
137
  escaped_query = re.escape(query)
138
  result = re.split(f'Answer the question based on the above context: {escaped_query}\n',response_text)[-1]
 
10
  from transformers import pipeline
11
  from langchain.prompts import ChatPromptTemplate
12
  from langchain_community.llms import HuggingFaceHub
13
+ from langchain.chains.summarize import load_summarize_chain
14
  import re
15
+ from dotenv import load_dotenv
16
  # import json
17
 
18
  # st.config(PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION="python")
 
97
  BULLET POINT SUMMARY:
98
  """
99
  # Load the summarization pipeline with the specified model
100
+ # summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
101
 
102
  # Generate the prompt
103
+ # prompt = summary_prompt_template.format(text=text)
104
 
105
  # Generate the summary
106
+ # summary = summarizer(prompt, max_length=1024, min_length=50)[0]["summary_text"]
107
+
108
+ try:
109
+ llm = HuggingFaceHub(
110
+ repo_id="meta-llama/Meta-Llama-3-8B-Instruct", model_kwargs={"temperature": 0, "max_new_tokens": 256, "task":"text-generation"}
111
+ )
112
+ st.write("llm connection started..")
113
+ except Exception as e:
114
+ st.error(f"Error invoke: {e}")
115
+
116
+ from langchain.chains.combine_documents import create_stuff_documents_chain
117
+ from langchain.chains.llm import LLMChain
118
+ from langchain_core.prompts import ChatPromptTemplate
119
+
120
+ # Define prompt
121
+ prompt = ChatPromptTemplate.from_messages(
122
+ [("system", summary_prompt_template)]
123
+ )
124
+
125
+ # Instantiate chain
126
+ chain = create_stuff_documents_chain(llm, prompt)
127
+
128
+ # Invoke chain
129
+ summary = chain.invoke({"text": longtext})
130
 
131
  with st.sidebar:
132
  st.divider()
 
155
  result = ""
156
 
157
  try:
158
+ # llm = HuggingFaceHub(
159
+ # repo_id="meta-llama/Meta-Llama-3-8B-Instruct", model_kwargs={"temperature": 0, "max_new_tokens": 256, "task":"text-generation"}
160
+ # )
161
  response_text = llm.invoke(prompt)
162
  escaped_query = re.escape(query)
163
  result = re.split(f'Answer the question based on the above context: {escaped_query}\n',response_text)[-1]