Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,961 Bytes
b94e0e5 173046e c98587e b94e0e5 173046e b94e0e5 173046e b94e0e5 fafa4d2 c2ea2f2 173046e 886c73a b94e0e5 173046e b94e0e5 173046e b94e0e5 15fd008 b94e0e5 15fd008 b94e0e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import os
import json
import subprocess
from threading import Thread
import torch
import spaces
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
MODEL_ID = "Qwen/Qwen2.5-Coder-7B-Instruct"
CHAT_TEMPLATE = "ChatML"
MODEL_NAME = MODEL_ID.split("/")[-1]
CONTEXT_LENGTH = 16000
# Estableciendo valores directamente para las variables
COLOR = "blue" # Color predeterminado de la interfaz
EMOJI = "🤖" # Emoji predeterminado para el modelo
DESCRIPTION = f"This is the {MODEL_NAME} model designed for coding assistance and general AI tasks." # Descripción predeterminada
@spaces.GPU()
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
# Format history with a given chat template
if CHAT_TEMPLATE == "Auto":
stop_tokens = [tokenizer.eos_token_id]
instruction = system_prompt + "\n\n"
for user, assistant in history:
instruction += f"User: {user}\nAssistant: {assistant}\n"
instruction += f"User: {message}\nAssistant:"
elif CHAT_TEMPLATE == "ChatML":
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n'
for user, assistant in history:
instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n'
instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n'
elif CHAT_TEMPLATE == "Mistral Instruct":
stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "]
instruction = f'<s>[INST] {system_prompt}\n'
for user, assistant in history:
instruction += f'{user} [/INST] {assistant}</s>[INST]'
instruction += f' {message} [/INST]'
else:
raise Exception("Incorrect chat template, select 'Auto', 'ChatML' or 'Mistral Instruct'")
print(instruction)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
input_ids, attention_mask = enc.input_ids, enc.attention_mask
if input_ids.shape[1] > CONTEXT_LENGTH:
input_ids = input_ids[:, -CONTEXT_LENGTH:]
attention_mask = attention_mask[:, -CONTEXT_LENGTH:]
generate_kwargs = dict(
input_ids=input_ids.to(device),
attention_mask=attention_mask.to(device),
streamer=streamer,
do_sample=True,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_k=top_k,
repetition_penalty=repetition_penalty,
top_p=top_p
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for new_token in streamer:
outputs.append(new_token)
if new_token in stop_tokens:
break
yield "".join(outputs)
# Load model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
quantization_config=quantization_config,
attn_implementation="flash_attention_2",
)
# Create Gradio interface
gr.ChatInterface(
predict,
title=EMOJI + " " + MODEL_NAME,
description=DESCRIPTION,
examples=[
["Can you solve the equation 2x + 3 = 11 for x in Python?"],
["Write a Java program that checks if a number is even or odd."],
["How can I reverse a string in JavaScript?"],
["Create a C++ function to find the factorial of a number."],
["Write a Python list comprehension to generate a list of squares of numbers from 1 to 10."],
["How do I implement a binary search algorithm in C?"],
["Write a Ruby script to read a file and count the number of lines in it."],
["Create a Swift class to represent a bank account with deposit and withdrawal methods."],
["How do I find the maximum element in an array using Kotlin?"],
["Write a Rust program to generate the Fibonacci sequence up to the 10th number."]
],
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False),
additional_inputs=[
gr.Textbox("You are a code assistant.", label="System prompt"),
gr.Slider(0, 1, 0.3, label="Temperature"),
gr.Slider(128, 4096, 1024, label="Max new tokens"),
gr.Slider(1, 80, 40, label="Top K sampling"),
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
gr.Slider(0, 1, 0.95, label="Top P sampling"),
],
theme=gr.themes.Soft(primary_hue=COLOR),
).queue().launch() |