Spaces:
Running
on
Zero
Running
on
Zero
nick_93
commited on
Commit
•
87b4a1a
1
Parent(s):
bf2495a
init
Browse files
app.py
CHANGED
@@ -8,13 +8,13 @@ import torch
|
|
8 |
from diffusers.pipelines.controlnet import StableDiffusionControlNetInpaintPipeline
|
9 |
from diffusers import ControlNetModel, UniPCMultistepScheduler, AutoPipelineForText2Image
|
10 |
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation, AutoModelForDepthEstimation
|
11 |
-
from
|
12 |
-
from
|
13 |
from diffusers import StableDiffusionXLPipeline
|
14 |
import gradio as gr
|
15 |
|
16 |
-
device = "cuda"
|
17 |
-
dtype = torch.float16
|
18 |
|
19 |
|
20 |
css = """
|
@@ -110,9 +110,9 @@ def segment_image(
|
|
110 |
|
111 |
def get_depth_pipeline():
|
112 |
feature_extractor = AutoImageProcessor.from_pretrained("models/models--LiheYoung--depth-anything-large-hf",
|
113 |
-
torch_dtype=
|
114 |
depth_estimator = AutoModelForDepthEstimation.from_pretrained("models/models--LiheYoung--depth-anything-large-hf",
|
115 |
-
torch_dtype=
|
116 |
return feature_extractor, depth_estimator
|
117 |
|
118 |
|
@@ -174,16 +174,16 @@ class ControlNetDepthDesignModelMulti:
|
|
174 |
|
175 |
#os.environ['HF_HUB_OFFLINE'] = "True"
|
176 |
controlnet_depth= ControlNetModel.from_pretrained(
|
177 |
-
"models/controlnet_depth", torch_dtype=
|
178 |
controlnet_seg = ControlNetModel.from_pretrained(
|
179 |
-
"models/own_controlnet", torch_dtype=
|
180 |
|
181 |
self.pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
182 |
"SG161222/Realistic_Vision_V5.1_noVAE",
|
183 |
#"models/runwayml--stable-diffusion-inpainting",
|
184 |
controlnet=[controlnet_depth, controlnet_seg],
|
185 |
safety_checker=None,
|
186 |
-
torch_dtype=
|
187 |
)
|
188 |
|
189 |
self.pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models",
|
@@ -278,7 +278,7 @@ class ControlNetDepthDesignModelMulti:
|
|
278 |
return design_image
|
279 |
|
280 |
|
281 |
-
def create_refseg_demo(model
|
282 |
gr.Markdown("### Stable Design demo")
|
283 |
with gr.Row():
|
284 |
with gr.Column():
|
@@ -334,7 +334,6 @@ def create_refseg_demo(model, device):
|
|
334 |
|
335 |
|
336 |
def main():
|
337 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
338 |
model = ControlNetDepthDesignModelMulti()
|
339 |
print('Models uploaded successfully')
|
340 |
|
@@ -347,7 +346,7 @@ def main():
|
|
347 |
gr.Markdown(title)
|
348 |
gr.Markdown(description)
|
349 |
|
350 |
-
create_refseg_demo(model
|
351 |
gr.HTML('''<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co/spaces/MykolaL/StableDesign?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br>
|
352 |
<p><img src="https://visitor-badge.glitch.me/badge?page_id=MykolaL/StableDesign" alt="visitors"></p></center>''')
|
353 |
|
|
|
8 |
from diffusers.pipelines.controlnet import StableDiffusionControlNetInpaintPipeline
|
9 |
from diffusers import ControlNetModel, UniPCMultistepScheduler, AutoPipelineForText2Image
|
10 |
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation, AutoModelForDepthEstimation
|
11 |
+
from colors import ade_palette
|
12 |
+
from utils import map_colors_rgb
|
13 |
from diffusers import StableDiffusionXLPipeline
|
14 |
import gradio as gr
|
15 |
|
16 |
+
device = "cpu"#"cuda"
|
17 |
+
dtype = torch.float32#torch.float16
|
18 |
|
19 |
|
20 |
css = """
|
|
|
110 |
|
111 |
def get_depth_pipeline():
|
112 |
feature_extractor = AutoImageProcessor.from_pretrained("models/models--LiheYoung--depth-anything-large-hf",
|
113 |
+
torch_dtype=dtype)
|
114 |
depth_estimator = AutoModelForDepthEstimation.from_pretrained("models/models--LiheYoung--depth-anything-large-hf",
|
115 |
+
torch_dtype=dtype)
|
116 |
return feature_extractor, depth_estimator
|
117 |
|
118 |
|
|
|
174 |
|
175 |
#os.environ['HF_HUB_OFFLINE'] = "True"
|
176 |
controlnet_depth= ControlNetModel.from_pretrained(
|
177 |
+
"models/controlnet_depth", torch_dtype=dtype, use_safetensors=True)
|
178 |
controlnet_seg = ControlNetModel.from_pretrained(
|
179 |
+
"models/own_controlnet", torch_dtype=dtype, use_safetensors=True)
|
180 |
|
181 |
self.pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
182 |
"SG161222/Realistic_Vision_V5.1_noVAE",
|
183 |
#"models/runwayml--stable-diffusion-inpainting",
|
184 |
controlnet=[controlnet_depth, controlnet_seg],
|
185 |
safety_checker=None,
|
186 |
+
torch_dtype=dtype
|
187 |
)
|
188 |
|
189 |
self.pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models",
|
|
|
278 |
return design_image
|
279 |
|
280 |
|
281 |
+
def create_refseg_demo(model):
|
282 |
gr.Markdown("### Stable Design demo")
|
283 |
with gr.Row():
|
284 |
with gr.Column():
|
|
|
334 |
|
335 |
|
336 |
def main():
|
|
|
337 |
model = ControlNetDepthDesignModelMulti()
|
338 |
print('Models uploaded successfully')
|
339 |
|
|
|
346 |
gr.Markdown(title)
|
347 |
gr.Markdown(description)
|
348 |
|
349 |
+
create_refseg_demo(model)
|
350 |
gr.HTML('''<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co/spaces/MykolaL/StableDesign?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br>
|
351 |
<p><img src="https://visitor-badge.glitch.me/badge?page_id=MykolaL/StableDesign" alt="visitors"></p></center>''')
|
352 |
|
colors.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Color mappings"""
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
TRIVIA = {
|
5 |
+
"#B47878": "building;edifice",
|
6 |
+
"#06E6E6": "sky",
|
7 |
+
"#04C803": "tree",
|
8 |
+
"#8C8C8C": "road;route",
|
9 |
+
"#04FA07": "grass",
|
10 |
+
"#96053D": "person;individual;someone;somebody;mortal;soul",
|
11 |
+
"#CCFF04": "plant;flora;plant;life",
|
12 |
+
"#787846": "earth;ground",
|
13 |
+
"#FF09E0": "house",
|
14 |
+
"#0066C8": "car;auto;automobile;machine;motorcar",
|
15 |
+
"#3DE6FA": "water",
|
16 |
+
"#FF3D06": "railing;rail",
|
17 |
+
"#FF5C00": "arcade;machine",
|
18 |
+
"#FFE000": "stairs;steps",
|
19 |
+
"#00F5FF": "fan",
|
20 |
+
"#FF008F": "step;stair",
|
21 |
+
"#1F00FF": "stairway;staircase",
|
22 |
+
"#FFD600": "radiator",
|
23 |
+
}
|
24 |
+
|
25 |
+
OBJECTS = {
|
26 |
+
"#CC05FF": "bed",
|
27 |
+
"#FF0633": "painting;picture",
|
28 |
+
"#DCDCDC": "mirror",
|
29 |
+
"#00FF14": "box",
|
30 |
+
"#FF0000": "flower",
|
31 |
+
"#FFA300": "book",
|
32 |
+
"#00FFC2": "television;television;receiver;television;set;tv;tv;set;idiot;box;boob;tube;telly;goggle;box",
|
33 |
+
"#F500FF": "pot;flowerpot",
|
34 |
+
"#00FFCC": "vase",
|
35 |
+
"#29FF00": "tray",
|
36 |
+
"#8FFF00": "poster;posting;placard;notice;bill;card",
|
37 |
+
"#5CFF00": "basket;handbasket",
|
38 |
+
"#00ADFF": "screen;door;screen",
|
39 |
+
}
|
40 |
+
|
41 |
+
|
42 |
+
SITTING = {
|
43 |
+
"#0B66FF": "sofa;couch;lounge",
|
44 |
+
"#CC4603": "chair",
|
45 |
+
"#07FFE0": "seat",
|
46 |
+
"#08FFD6": "armchair",
|
47 |
+
"#FFC207": "cushion",
|
48 |
+
"#00EBFF": "pillow",
|
49 |
+
"#00D6FF": "stool",
|
50 |
+
"#1400FF": "blanket;cover",
|
51 |
+
"#0A00FF": "swivel;chair",
|
52 |
+
"#FF9900": "ottoman;pouf;pouffe;puff;hassock",
|
53 |
+
}
|
54 |
+
|
55 |
+
LIGHTING = {
|
56 |
+
"#E0FF08": "lamp",
|
57 |
+
"#FFAD00": "light;light;source",
|
58 |
+
"#001FFF": "chandelier;pendant;pendent",
|
59 |
+
}
|
60 |
+
|
61 |
+
TABLES = {
|
62 |
+
"#FF0652": "table",
|
63 |
+
"#0AFF47": "desk",
|
64 |
+
}
|
65 |
+
|
66 |
+
CLOSETS = {
|
67 |
+
"#E005FF": "cabinet",
|
68 |
+
"#FF0747": "shelf",
|
69 |
+
"#07FFFF": "wardrobe;closet;press",
|
70 |
+
"#0633FF": "chest;of;drawers;chest;bureau;dresser",
|
71 |
+
"#0000FF": "case;display;case;showcase;vitrine",
|
72 |
+
}
|
73 |
+
|
74 |
+
|
75 |
+
BATHROOM = {
|
76 |
+
"#6608FF": "bathtub;bathing;tub;bath;tub",
|
77 |
+
"#00FF85": "toilet;can;commode;crapper;pot;potty;stool;throne",
|
78 |
+
"#0085FF": "shower",
|
79 |
+
"#FF0066": "towel",
|
80 |
+
}
|
81 |
+
|
82 |
+
WINDOWS = {
|
83 |
+
"#FF3307": "curtain;drape;drapery;mantle;pall",
|
84 |
+
"#E6E6E6": "windowpane;window",
|
85 |
+
"#00FF3D": "awning;sunshade;sunblind",
|
86 |
+
"#003DFF": "blind;screen",
|
87 |
+
}
|
88 |
+
|
89 |
+
FLOOR = {
|
90 |
+
"#FF095C": "rug;carpet;carpeting",
|
91 |
+
"#503232": "floor;flooring",
|
92 |
+
}
|
93 |
+
|
94 |
+
INTERIOR = {
|
95 |
+
"#787878": "wall",
|
96 |
+
"#787850": "ceiling",
|
97 |
+
"#08FF33": "door;double;door",
|
98 |
+
}
|
99 |
+
|
100 |
+
KITCHEN = {
|
101 |
+
"#00FF29": "kitchen;island",
|
102 |
+
"#14FF00": "refrigerator;icebox",
|
103 |
+
"#00A3FF": "sink",
|
104 |
+
"#EB0CFF": "counter",
|
105 |
+
"#D6FF00": "dishwasher;dish;washer;dishwashing;machine",
|
106 |
+
"#FF00EB": "microwave;microwave;oven",
|
107 |
+
"#47FF00": "oven",
|
108 |
+
"#66FF00": "clock",
|
109 |
+
"#00FFB8": "plate",
|
110 |
+
"#19C2C2": "glass;drinking;glass",
|
111 |
+
"#00FF99": "bar",
|
112 |
+
"#00FF0A": "bottle",
|
113 |
+
"#FF7000": "buffet;counter;sideboard",
|
114 |
+
"#B800FF": "washer;automatic;washer;washing;machine",
|
115 |
+
"#00FF70": "coffee;table;cocktail;table",
|
116 |
+
"#008FFF": "countertop",
|
117 |
+
"#33FF00": "stove;kitchen;stove;range;kitchen;range;cooking;stove",
|
118 |
+
}
|
119 |
+
|
120 |
+
LIVINGROOM = {
|
121 |
+
"#FA0A0F": "fireplace;hearth;open;fireplace",
|
122 |
+
"#FF4700": "pool;table;billiard;table;snooker;table",
|
123 |
+
}
|
124 |
+
|
125 |
+
OFFICE = {
|
126 |
+
"#00FFAD": "computer;computing;machine;computing;device;data;processor;electronic;computer;information;processing;system",
|
127 |
+
"#00FFF5": "bookcase",
|
128 |
+
"#0633FF": "chest;of;drawers;chest;bureau;dresser",
|
129 |
+
"#005CFF": "monitor;monitoring;device",
|
130 |
+
}
|
131 |
+
|
132 |
+
|
133 |
+
COLOR_MAPPING_CATEGORY_ = {
|
134 |
+
'keep background': {'#FFFFFF': 'background'},
|
135 |
+
'trivia': TRIVIA,
|
136 |
+
'objects': OBJECTS,
|
137 |
+
'sitting': SITTING,
|
138 |
+
'lighting': LIGHTING,
|
139 |
+
'tables': TABLES,
|
140 |
+
'closets': CLOSETS,
|
141 |
+
'bathroom': BATHROOM,
|
142 |
+
'windows': WINDOWS,
|
143 |
+
'floor': FLOOR,
|
144 |
+
'interior': INTERIOR,
|
145 |
+
'kitchen': KITCHEN,
|
146 |
+
'livingroom': LIVINGROOM,
|
147 |
+
'office': OFFICE}
|
148 |
+
|
149 |
+
|
150 |
+
COLOR_MAPPING_ = {
|
151 |
+
'#FFFFFF': 'background',
|
152 |
+
"#787878": "wall",
|
153 |
+
"#B47878": "building;edifice",
|
154 |
+
"#06E6E6": "sky",
|
155 |
+
"#503232": "floor;flooring",
|
156 |
+
"#04C803": "tree",
|
157 |
+
"#787850": "ceiling",
|
158 |
+
"#8C8C8C": "road;route",
|
159 |
+
"#CC05FF": "bed",
|
160 |
+
"#E6E6E6": "windowpane;window",
|
161 |
+
"#04FA07": "grass",
|
162 |
+
"#E005FF": "cabinet",
|
163 |
+
"#EBFF07": "sidewalk;pavement",
|
164 |
+
"#96053D": "person;individual;someone;somebody;mortal;soul",
|
165 |
+
"#787846": "earth;ground",
|
166 |
+
"#08FF33": "door;double;door",
|
167 |
+
"#FF0652": "table",
|
168 |
+
"#8FFF8C": "mountain;mount",
|
169 |
+
"#CCFF04": "plant;flora;plant;life",
|
170 |
+
"#FF3307": "curtain;drape;drapery;mantle;pall",
|
171 |
+
"#CC4603": "chair",
|
172 |
+
"#0066C8": "car;auto;automobile;machine;motorcar",
|
173 |
+
"#3DE6FA": "water",
|
174 |
+
"#FF0633": "painting;picture",
|
175 |
+
"#0B66FF": "sofa;couch;lounge",
|
176 |
+
"#FF0747": "shelf",
|
177 |
+
"#FF09E0": "house",
|
178 |
+
"#0907E6": "sea",
|
179 |
+
"#DCDCDC": "mirror",
|
180 |
+
"#FF095C": "rug;carpet;carpeting",
|
181 |
+
"#7009FF": "field",
|
182 |
+
"#08FFD6": "armchair",
|
183 |
+
"#07FFE0": "seat",
|
184 |
+
"#FFB806": "fence;fencing",
|
185 |
+
"#0AFF47": "desk",
|
186 |
+
"#FF290A": "rock;stone",
|
187 |
+
"#07FFFF": "wardrobe;closet;press",
|
188 |
+
"#E0FF08": "lamp",
|
189 |
+
"#6608FF": "bathtub;bathing;tub;bath;tub",
|
190 |
+
"#FF3D06": "railing;rail",
|
191 |
+
"#FFC207": "cushion",
|
192 |
+
"#FF7A08": "base;pedestal;stand",
|
193 |
+
"#00FF14": "box",
|
194 |
+
"#FF0829": "column;pillar",
|
195 |
+
"#FF0599": "signboard;sign",
|
196 |
+
"#0633FF": "chest;of;drawers;chest;bureau;dresser",
|
197 |
+
"#EB0CFF": "counter",
|
198 |
+
"#A09614": "sand",
|
199 |
+
"#00A3FF": "sink",
|
200 |
+
"#8C8C8C": "skyscraper",
|
201 |
+
"#FA0A0F": "fireplace;hearth;open;fireplace",
|
202 |
+
"#14FF00": "refrigerator;icebox",
|
203 |
+
"#1FFF00": "grandstand;covered;stand",
|
204 |
+
"#FF1F00": "path",
|
205 |
+
"#FFE000": "stairs;steps",
|
206 |
+
"#99FF00": "runway",
|
207 |
+
"#0000FF": "case;display;case;showcase;vitrine",
|
208 |
+
"#FF4700": "pool;table;billiard;table;snooker;table",
|
209 |
+
"#00EBFF": "pillow",
|
210 |
+
"#00ADFF": "screen;door;screen",
|
211 |
+
"#1F00FF": "stairway;staircase",
|
212 |
+
"#0BC8C8": "river",
|
213 |
+
"#FF5200": "bridge;span",
|
214 |
+
"#00FFF5": "bookcase",
|
215 |
+
"#003DFF": "blind;screen",
|
216 |
+
"#00FF70": "coffee;table;cocktail;table",
|
217 |
+
"#00FF85": "toilet;can;commode;crapper;pot;potty;stool;throne",
|
218 |
+
"#FF0000": "flower",
|
219 |
+
"#FFA300": "book",
|
220 |
+
"#FF6600": "hill",
|
221 |
+
"#C2FF00": "bench",
|
222 |
+
"#008FFF": "countertop",
|
223 |
+
"#33FF00": "stove;kitchen;stove;range;kitchen;range;cooking;stove",
|
224 |
+
"#0052FF": "palm;palm;tree",
|
225 |
+
"#00FF29": "kitchen;island",
|
226 |
+
"#00FFAD": "computer;computing;machine;computing;device;data;processor;electronic;computer;information;processing;system",
|
227 |
+
"#0A00FF": "swivel;chair",
|
228 |
+
"#ADFF00": "boat",
|
229 |
+
"#00FF99": "bar",
|
230 |
+
"#FF5C00": "arcade;machine",
|
231 |
+
"#FF00FF": "hovel;hut;hutch;shack;shanty",
|
232 |
+
"#FF00F5": "bus;autobus;coach;charabanc;double-decker;jitney;motorbus;motorcoach;omnibus;passenger;vehicle",
|
233 |
+
"#FF0066": "towel",
|
234 |
+
"#FFAD00": "light;light;source",
|
235 |
+
"#FF0014": "truck;motortruck",
|
236 |
+
"#FFB8B8": "tower",
|
237 |
+
"#001FFF": "chandelier;pendant;pendent",
|
238 |
+
"#00FF3D": "awning;sunshade;sunblind",
|
239 |
+
"#0047FF": "streetlight;street;lamp",
|
240 |
+
"#FF00CC": "booth;cubicle;stall;kiosk",
|
241 |
+
"#00FFC2": "television;television;receiver;television;set;tv;tv;set;idiot;box;boob;tube;telly;goggle;box",
|
242 |
+
"#00FF52": "airplane;aeroplane;plane",
|
243 |
+
"#000AFF": "dirt;track",
|
244 |
+
"#0070FF": "apparel;wearing;apparel;dress;clothes",
|
245 |
+
"#3300FF": "pole",
|
246 |
+
"#00C2FF": "land;ground;soil",
|
247 |
+
"#007AFF": "bannister;banister;balustrade;balusters;handrail",
|
248 |
+
"#00FFA3": "escalator;moving;staircase;moving;stairway",
|
249 |
+
"#FF9900": "ottoman;pouf;pouffe;puff;hassock",
|
250 |
+
"#00FF0A": "bottle",
|
251 |
+
"#FF7000": "buffet;counter;sideboard",
|
252 |
+
"#8FFF00": "poster;posting;placard;notice;bill;card",
|
253 |
+
"#5200FF": "stage",
|
254 |
+
"#A3FF00": "van",
|
255 |
+
"#FFEB00": "ship",
|
256 |
+
"#08B8AA": "fountain",
|
257 |
+
"#8500FF": "conveyer;belt;conveyor;belt;conveyer;conveyor;transporter",
|
258 |
+
"#00FF5C": "canopy",
|
259 |
+
"#B800FF": "washer;automatic;washer;washing;machine",
|
260 |
+
"#FF001F": "plaything;toy",
|
261 |
+
"#00B8FF": "swimming;pool;swimming;bath;natatorium",
|
262 |
+
"#00D6FF": "stool",
|
263 |
+
"#FF0070": "barrel;cask",
|
264 |
+
"#5CFF00": "basket;handbasket",
|
265 |
+
"#00E0FF": "waterfall;falls",
|
266 |
+
"#70E0FF": "tent;collapsible;shelter",
|
267 |
+
"#46B8A0": "bag",
|
268 |
+
"#A300FF": "minibike;motorbike",
|
269 |
+
"#9900FF": "cradle",
|
270 |
+
"#47FF00": "oven",
|
271 |
+
"#FF00A3": "ball",
|
272 |
+
"#FFCC00": "food;solid;food",
|
273 |
+
"#FF008F": "step;stair",
|
274 |
+
"#00FFEB": "tank;storage;tank",
|
275 |
+
"#85FF00": "trade;name;brand;name;brand;marque",
|
276 |
+
"#FF00EB": "microwave;microwave;oven",
|
277 |
+
"#F500FF": "pot;flowerpot",
|
278 |
+
"#FF007A": "animal;animate;being;beast;brute;creature;fauna",
|
279 |
+
"#FFF500": "bicycle;bike;wheel;cycle",
|
280 |
+
"#0ABED4": "lake",
|
281 |
+
"#D6FF00": "dishwasher;dish;washer;dishwashing;machine",
|
282 |
+
"#00CCFF": "screen;silver;screen;projection;screen",
|
283 |
+
"#1400FF": "blanket;cover",
|
284 |
+
"#FFFF00": "sculpture",
|
285 |
+
"#0099FF": "hood;exhaust;hood",
|
286 |
+
"#0029FF": "sconce",
|
287 |
+
"#00FFCC": "vase",
|
288 |
+
"#2900FF": "traffic;light;traffic;signal;stoplight",
|
289 |
+
"#29FF00": "tray",
|
290 |
+
"#AD00FF": "ashcan;trash;can;garbage;can;wastebin;ash;bin;ash-bin;ashbin;dustbin;trash;barrel;trash;bin",
|
291 |
+
"#00F5FF": "fan",
|
292 |
+
"#4700FF": "pier;wharf;wharfage;dock",
|
293 |
+
"#7A00FF": "crt;screen",
|
294 |
+
"#00FFB8": "plate",
|
295 |
+
"#005CFF": "monitor;monitoring;device",
|
296 |
+
"#B8FF00": "bulletin;board;notice;board",
|
297 |
+
"#0085FF": "shower",
|
298 |
+
"#FFD600": "radiator",
|
299 |
+
"#19C2C2": "glass;drinking;glass",
|
300 |
+
"#66FF00": "clock",
|
301 |
+
"#5C00FF": "flag",
|
302 |
+
}
|
303 |
+
|
304 |
+
|
305 |
+
def ade_palette() -> List[List[int]]:
|
306 |
+
"""ADE20K palette that maps each class to RGB values."""
|
307 |
+
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
308 |
+
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
309 |
+
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
310 |
+
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
311 |
+
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
312 |
+
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
313 |
+
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
314 |
+
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
315 |
+
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
316 |
+
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
317 |
+
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
318 |
+
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
319 |
+
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
320 |
+
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
321 |
+
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
322 |
+
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
323 |
+
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
324 |
+
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
325 |
+
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
326 |
+
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
327 |
+
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
328 |
+
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
329 |
+
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
330 |
+
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
331 |
+
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
332 |
+
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
333 |
+
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
334 |
+
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
335 |
+
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
336 |
+
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
337 |
+
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
338 |
+
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
339 |
+
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
340 |
+
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
341 |
+
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
342 |
+
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
343 |
+
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
344 |
+
[102, 255, 0], [92, 0, 255]]
|
palette.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
from colors import COLOR_MAPPING_, COLOR_MAPPING_CATEGORY_
|
3 |
+
|
4 |
+
|
5 |
+
def convert_hex_to_rgba(hex_code: str) -> str:
|
6 |
+
"""Convert hex code to rgba.
|
7 |
+
Args:
|
8 |
+
hex_code (str): hex string
|
9 |
+
Returns:
|
10 |
+
str: rgba string
|
11 |
+
"""
|
12 |
+
hex_code = hex_code.lstrip('#')
|
13 |
+
return "rgba(" + str(int(hex_code[0:2], 16)) + ", " + str(int(hex_code[2:4], 16)) + ", " + str(int(hex_code[4:6], 16)) + ", 1.0)"
|
14 |
+
|
15 |
+
|
16 |
+
def convert_dict_to_rgba(color_dict: Dict) -> Dict:
|
17 |
+
"""Convert hex code to rgba for all elements in a dictionary.
|
18 |
+
Args:
|
19 |
+
color_dict (Dict): color dictionary
|
20 |
+
Returns:
|
21 |
+
Dict: color dictionary with rgba values
|
22 |
+
"""
|
23 |
+
updated_dict = {}
|
24 |
+
for k, v in color_dict.items():
|
25 |
+
updated_dict[convert_hex_to_rgba(k)] = v
|
26 |
+
return updated_dict
|
27 |
+
|
28 |
+
|
29 |
+
def convert_nested_dict_to_rgba(nested_dict):
|
30 |
+
updated_dict = {}
|
31 |
+
for k, v in nested_dict.items():
|
32 |
+
updated_dict[k] = convert_dict_to_rgba(v)
|
33 |
+
return updated_dict
|
34 |
+
|
35 |
+
|
36 |
+
COLOR_MAPPING = convert_dict_to_rgba(COLOR_MAPPING_)
|
37 |
+
COLOR_MAPPING_CATEGORY = convert_nested_dict_to_rgba(COLOR_MAPPING_CATEGORY_)
|
utils.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
from scipy.signal import fftconvolve
|
7 |
+
|
8 |
+
from palette import COLOR_MAPPING, COLOR_MAPPING_
|
9 |
+
|
10 |
+
|
11 |
+
def to_rgb(color: str) -> tuple:
|
12 |
+
"""Convert hex color to rgb.
|
13 |
+
Args:
|
14 |
+
color (str): hex color
|
15 |
+
Returns:
|
16 |
+
tuple: rgb color
|
17 |
+
"""
|
18 |
+
return tuple(int(color[i:i+2], 16) for i in (1, 3, 5))
|
19 |
+
|
20 |
+
|
21 |
+
def map_colors(color: str) -> str:
|
22 |
+
"""Map color to hex value.
|
23 |
+
Args:
|
24 |
+
color (str): color name
|
25 |
+
Returns:
|
26 |
+
str: hex value
|
27 |
+
"""
|
28 |
+
return COLOR_MAPPING[color]
|
29 |
+
|
30 |
+
|
31 |
+
def map_colors_rgb(color: tuple) -> str:
|
32 |
+
return COLOR_MAPPING_RGB[color]
|
33 |
+
|
34 |
+
|
35 |
+
def convolution(mask: Image.Image, size=9) -> Image:
|
36 |
+
"""Method to blur the mask
|
37 |
+
Args:
|
38 |
+
mask (Image): masking image
|
39 |
+
size (int, optional): size of the blur. Defaults to 9.
|
40 |
+
Returns:
|
41 |
+
Image: blurred mask
|
42 |
+
"""
|
43 |
+
mask = np.array(mask.convert("L"))
|
44 |
+
conv = np.ones((size, size)) / size**2
|
45 |
+
mask_blended = fftconvolve(mask, conv, 'same')
|
46 |
+
mask_blended = mask_blended.astype(np.uint8).copy()
|
47 |
+
|
48 |
+
border = size
|
49 |
+
|
50 |
+
# replace borders with original values
|
51 |
+
mask_blended[:border, :] = mask[:border, :]
|
52 |
+
mask_blended[-border:, :] = mask[-border:, :]
|
53 |
+
mask_blended[:, :border] = mask[:, :border]
|
54 |
+
mask_blended[:, -border:] = mask[:, -border:]
|
55 |
+
|
56 |
+
return Image.fromarray(mask_blended).convert("L")
|
57 |
+
|
58 |
+
|
59 |
+
def flush():
|
60 |
+
gc.collect()
|
61 |
+
torch.cuda.empty_cache()
|
62 |
+
|
63 |
+
|
64 |
+
def postprocess_image_masking(inpainted: Image, image: Image,
|
65 |
+
mask: Image) -> Image:
|
66 |
+
"""Method to postprocess the inpainted image
|
67 |
+
Args:
|
68 |
+
inpainted (Image): inpainted image
|
69 |
+
image (Image): original image
|
70 |
+
mask (Image): mask
|
71 |
+
Returns:
|
72 |
+
Image: inpainted image
|
73 |
+
"""
|
74 |
+
final_inpainted = Image.composite(inpainted.convert("RGBA"),
|
75 |
+
image.convert("RGBA"), mask)
|
76 |
+
return final_inpainted.convert("RGB")
|
77 |
+
|
78 |
+
|
79 |
+
COLOR_NAMES = list(COLOR_MAPPING.keys())
|
80 |
+
COLOR_RGB = [to_rgb(k) for k in COLOR_MAPPING_.keys()] + [(0, 0, 0),
|
81 |
+
(255, 255, 255)]
|
82 |
+
INVERSE_COLORS = {v: to_rgb(k) for k, v in COLOR_MAPPING_.items()}
|
83 |
+
COLOR_MAPPING_RGB = {to_rgb(k): v for k, v in COLOR_MAPPING_.items()}
|