Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
import gradio as gr | |
import tempfile | |
import os | |
import uuid | |
import scipy.io.wavfile | |
import time | |
import numpy as np | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperTokenizer, pipeline | |
import subprocess | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 | |
MODEL_NAME = "openai/whisper-large-v3-turbo" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
MODEL_NAME, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="flash_attention_2" | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(MODEL_NAME) | |
tokenizer = WhisperTokenizer.from_pretrained(MODEL_NAME) | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=model, | |
tokenizer=tokenizer, | |
feature_extractor=processor.feature_extractor, | |
chunk_length_s=10, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
def transcribe(inputs, previous_transcription): | |
start_time = time.time() | |
try: | |
filename = f"{uuid.uuid4().hex}.wav" | |
sample_rate, audio_data = inputs | |
scipy.io.wavfile.write(filename, sample_rate, audio_data) | |
transcription = pipe(filename)["text"] | |
previous_transcription += transcription | |
end_time = time.time() | |
latency = end_time - start_time | |
return previous_transcription, f"{latency:.2f}" | |
except Exception as e: | |
print(f"Error during Transcription: {e}") | |
return previous_transcription, "Error" | |
def translate_and_transcribe(inputs, previous_transcription, target_language): | |
start_time = time.time() | |
try: | |
filename = f"{uuid.uuid4().hex}.wav" | |
sample_rate, audio_data = inputs | |
scipy.io.wavfile.write(filename, sample_rate, audio_data) | |
translation = pipe(filename, generate_kwargs={"task": "translate", "language": target_language} )["text"] | |
previous_transcription += translation | |
end_time = time.time() | |
latency = end_time - start_time | |
return previous_transcription, f"{latency:.2f}" | |
except Exception as e: | |
print(f"Error during Translation and Transcription: {e}") | |
return previous_transcription, "Error" | |
def clear(): | |
return "" | |
with gr.Blocks() as microphone: | |
with gr.Column(): | |
gr.Markdown(f"# Realtime Whisper Large V3 Turbo: \n Transcribe Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.") | |
with gr.Row(): | |
input_audio_microphone = gr.Audio(streaming=True) | |
output = gr.Textbox(label="Transcription", value="") | |
latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0", scale=0) | |
with gr.Row(): | |
clear_button = gr.Button("Clear Output") | |
input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output, latency_textbox], time_limit=45, stream_every=2, concurrency_limit=None) | |
clear_button.click(clear, outputs=[output]) | |
with gr.Blocks() as file: | |
with gr.Column(): | |
gr.Markdown(f"# Realtime Whisper Large V3 Turbo: \n Transcribe Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.") | |
with gr.Row(): | |
input_audio_microphone = gr.Audio(sources="upload", type="numpy") | |
output = gr.Textbox(label="Transcription", value="") | |
latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0", scale=0) | |
with gr.Row(): | |
submit_button = gr.Button("Submit") | |
clear_button = gr.Button("Clear Output") | |
submit_button.click(transcribe, [input_audio_microphone, output], [output, latency_textbox], concurrency_limit=None) | |
clear_button.click(clear, outputs=[output]) | |
# with gr.Blocks() as translate: | |
# with gr.Column(): | |
# gr.Markdown(f"# Realtime Whisper Large V3 Turbo (Translation): \n Transcribe and Translate Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.") | |
# with gr.Row(): | |
# input_audio_microphone = gr.Audio(streaming=True) | |
# output = gr.Textbox(label="Transcription and Translation", value="") | |
# latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0", scale=0) | |
# target_language_dropdown = gr.Dropdown( | |
# choices=["english", "french", "hindi", "spanish", "russian"], | |
# label="Target Language", | |
# value="<|es|>" | |
# ) | |
# with gr.Row(): | |
# clear_button = gr.Button("Clear Output") | |
# input_audio_microphone.stream( | |
# translate_and_transcribe, | |
# [input_audio_microphone, output, target_language_dropdown], | |
# [output, latency_textbox], | |
# time_limit=45, | |
# stream_every=2, | |
# concurrency_limit=None | |
# ) | |
# clear_button.click(clear, outputs=[output]) | |
with gr.Blocks(theme=gr.themes.Ocean()) as demo: | |
gr.TabbedInterface([microphone, file], ["Microphone", "Transcribe from file"]) | |
demo.launch() |