|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import torch |
|
import pandas as pd |
|
from transformers import AutoImageProcessor, AutoModelForObjectDetection, AutoProcessor, Pix2StructForConditionalGeneration |
|
import torch |
|
from io import StringIO |
|
|
|
device="cpu" |
|
|
|
MAX_PATCHES = 1024 |
|
MAX_NEW_TOKENS = 1024 |
|
TABLE_THRESHOLD = 0.9 |
|
TABLE_PADDING = 5 |
|
|
|
|
|
table_detr_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection") |
|
table_detr_model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm") |
|
table_detr_model.to(device) |
|
table_detr_model.eval() |
|
|
|
no_table_found = Image.open("app_assets/no_table_found.png") |
|
|
|
|
|
table_recog_processor = AutoProcessor.from_pretrained("KennethTM/pix2struct-base-table2html") |
|
table_recog_model = Pix2StructForConditionalGeneration.from_pretrained("KennethTM/pix2struct-base-table2html") |
|
table_recog_model.to(device) |
|
table_recog_model.eval() |
|
|
|
def table_detection(image, threshold=TABLE_THRESHOLD): |
|
|
|
inputs = table_detr_processor(images=image, return_tensors="pt") |
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
|
|
with torch.inference_mode(): |
|
|
|
outputs = table_detr_model(**inputs) |
|
|
|
target_sizes = torch.tensor([image.size[::-1]]) |
|
results = table_detr_processor.post_process_object_detection(outputs, threshold=threshold, target_sizes=target_sizes) |
|
table_boxes = [i for i in results[0]["boxes"]] |
|
|
|
tables = [] |
|
if len(table_boxes) == 0: |
|
tables.append(no_table_found) |
|
else: |
|
padding = TABLE_PADDING |
|
for box in table_boxes: |
|
box = [int(i) for i in box] |
|
box[0] = max(0, box[0]-padding) |
|
box[1] = max(0, box[1]-padding) |
|
box[2] = min(image.width, box[2]+padding) |
|
box[3] = min(image.height, box[3]+padding) |
|
tables.append(image.crop(box)) |
|
|
|
return tables |
|
|
|
def table_recognition(image, max_new_tokens = MAX_NEW_TOKENS): |
|
|
|
encoding = table_recog_processor(image, return_tensors="pt", max_patches=MAX_PATCHES) |
|
|
|
with torch.inference_mode(): |
|
flattened_patches = encoding.pop("flattened_patches").to(device) |
|
attention_mask = encoding.pop("attention_mask").to(device) |
|
predictions = table_recog_model.generate(flattened_patches=flattened_patches, attention_mask=attention_mask, max_new_tokens=max_new_tokens) |
|
|
|
predictions_decoded = table_recog_processor.tokenizer.batch_decode(predictions, skip_special_tokens=True) |
|
table_html = predictions_decoded[0] |
|
|
|
return table_html |
|
|
|
def table_recognition_outputs(image): |
|
|
|
table_html = table_recognition(image) |
|
|
|
|
|
with open("table.html", "w") as file: |
|
file.write(table_html) |
|
|
|
df = pd.read_html(StringIO(table_html))[0] |
|
df.to_csv("table.csv", index=False) |
|
|
|
return [table_html, |
|
gr.DownloadButton("Download HTML", value="table.html", visible=True), |
|
gr.DownloadButton("Download CSV", value="table.csv", visible=True)] |
|
|
|
demo_detection = [ |
|
"app_assets/example_one_table.jpg", |
|
"app_assets/example_two_tables.jpg", |
|
] |
|
|
|
demo_recognition = [ |
|
"app_assets/example_recog_1.jpg", |
|
"app_assets/example_recog_2.jpg", |
|
] |
|
|
|
with gr.Blocks() as demo: |
|
|
|
with gr.Tab("Recognition"): |
|
gr.Markdown("# Table recognition") |
|
gr.Markdown("This model ([KennethTM/pix2struct-base-table2html](https://huggingface.co/KennethTM/pix2struct-base-table2html)) converts an image of a table to HTML format and is finetuned from [Pix2Struct base model](https://huggingface.co/google/pix2struct-base).") |
|
gr.Markdown("The model expects an image containing only a table. If the table is embedded in a document, first use the detection model in the 'Detection' tab.") |
|
gr.Markdown("*Note that recognition model inference is slow on CPU (a few minutes), please be patient*") |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_table = gr.Image(type="pil", label="Table", show_label=True, scale=1) |
|
|
|
with gr.Column(): |
|
output_html = gr.HTML(label="Table (HTML format)", show_label=False) |
|
|
|
with gr.Row(): |
|
download_html = gr.DownloadButton(visible=False) |
|
download_csv = gr.DownloadButton(visible=False) |
|
|
|
with gr.Row(): |
|
examples = gr.Examples(demo_recognition, input_table, cache_examples=False, label="Example tables (MMTab dataset)") |
|
|
|
input_table.change(fn=table_recognition_outputs, inputs=input_table, outputs=[output_html, download_html, download_csv]) |
|
|
|
with gr.Tab("Detection"): |
|
gr.Markdown("# Table detection") |
|
gr.Markdown("This model detect tables in a document image with [Microsoft's Table Transformer model](https://huggingface.co/microsoft/table-transformer-detection).") |
|
gr.Markdown("Use the detection to find tables, download the results and use as input for table recognition in the 'Recognition' tab.") |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(type="pil", label="Document", show_label=True, scale=1) |
|
|
|
with gr.Column(): |
|
output_gallery = gr.Gallery(type="pil", label="Tables", show_label=True, scale=1, format="png") |
|
|
|
with gr.Row(): |
|
examples = gr.Examples(demo_detection, input_image, cache_examples=False, label="Example documents (PubTabNet dataset)") |
|
|
|
input_image.change(fn=table_detection, inputs=input_image, outputs=output_gallery) |
|
|
|
demo.launch() |
|
|