Spaces:
Running
Running
''' | |
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021) | |
@author: yangxy ([email protected]) | |
''' | |
import os | |
import cv2 | |
import glob | |
import time | |
import numpy as np | |
from PIL import Image | |
import __init_paths | |
from retinaface.retinaface_detection import RetinaFaceDetection | |
from face_model.face_gan import FaceGAN | |
from sr_model.real_esrnet import RealESRNet | |
from align_faces import warp_and_crop_face, get_reference_facial_points | |
class FaceEnhancement(object): | |
def __init__(self, base_dir='./', size=512, out_size=None, model=None, channel_multiplier=2, narrow=1, key=None, device='cpu', u=False): | |
self.facedetector = RetinaFaceDetection(base_dir, device) | |
self.facegan = FaceGAN(base_dir, size, out_size, model, channel_multiplier, narrow, key, device=device) | |
self.srmodel = RealESRNet(base_dir, 'realesrnet', 2, 0, device=device) | |
self.use_sr = u | |
self.size = size | |
self.out_size = size if out_size==None else out_size | |
self.threshold = 0.9 | |
# the mask for pasting restored faces back | |
self.mask = np.zeros((512, 512), np.float32) | |
cv2.rectangle(self.mask, (26, 26), (486, 486), (1, 1, 1), -1, cv2.LINE_AA) | |
self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11) | |
self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11) | |
self.kernel = np.array(( | |
[0.0625, 0.125, 0.0625], | |
[0.125, 0.25, 0.125], | |
[0.0625, 0.125, 0.0625]), dtype="float32") | |
# get the reference 5 landmarks position in the crop settings | |
default_square = True | |
inner_padding_factor = 0.25 | |
outer_padding = (0, 0) | |
self.reference_5pts = get_reference_facial_points( | |
(self.size, self.size), inner_padding_factor, outer_padding, default_square) | |
def mask_postprocess(self, mask, thres=20): | |
mask[:thres, :] = 0; mask[-thres:, :] = 0 | |
mask[:, :thres] = 0; mask[:, -thres:] = 0 | |
mask = cv2.GaussianBlur(mask, (101, 101), 11) | |
mask = cv2.GaussianBlur(mask, (101, 101), 11) | |
return mask.astype(np.float32) | |
def process(self, img, aligned=False): | |
orig_faces, enhanced_faces = [], [] | |
if aligned: | |
ef = self.facegan.process(img) | |
orig_faces.append(img) | |
enhanced_faces.append(ef) | |
if self.use_sr: | |
ef = self.srmodel.process(ef) | |
return ef, orig_faces, enhanced_faces | |
if self.use_sr: | |
img_sr = self.srmodel.process(img) | |
if img_sr is not None: | |
img = cv2.resize(img, img_sr.shape[:2][::-1]) | |
facebs, landms = self.facedetector.detect(img) | |
height, width = img.shape[:2] | |
full_mask = np.zeros((height, width), dtype=np.float32) | |
full_img = np.zeros(img.shape, dtype=np.uint8) | |
for i, (faceb, facial5points) in enumerate(zip(facebs, landms)): | |
if faceb[4]<self.threshold: continue | |
fh, fw = (faceb[3]-faceb[1]), (faceb[2]-faceb[0]) | |
facial5points = np.reshape(facial5points, (2, 5)) | |
of, tfm_inv = warp_and_crop_face(img, facial5points, reference_pts=self.reference_5pts, crop_size=(self.size, self.size)) | |
# enhance the face | |
ef = self.facegan.process(of) | |
orig_faces.append(of) | |
enhanced_faces.append(ef) | |
tmp_mask = self.mask | |
tmp_mask = cv2.resize(tmp_mask, (self.size, self.size)) | |
tmp_mask = cv2.warpAffine(tmp_mask, tfm_inv, (width, height), flags=3) | |
if min(fh, fw)<100: # gaussian filter for small faces | |
ef = cv2.filter2D(ef, -1, self.kernel) | |
if self.size!=self.out_size: | |
ef = cv2.resize(ef, (self.size, self.size)) | |
tmp_img = cv2.warpAffine(ef, tfm_inv, (width, height), flags=3) | |
mask = tmp_mask - full_mask | |
full_mask[np.where(mask>0)] = tmp_mask[np.where(mask>0)] | |
full_img[np.where(mask>0)] = tmp_img[np.where(mask>0)] | |
full_mask = full_mask[:, :, np.newaxis] | |
if self.use_sr and img_sr is not None: | |
img = cv2.convertScaleAbs(img_sr*(1-full_mask) + full_img*full_mask) | |
else: | |
img = cv2.convertScaleAbs(img*(1-full_mask) + full_img*full_mask) | |
return img, orig_faces, enhanced_faces | |