Spaces:
Runtime error
Runtime error
Kwadwo Agyapon-Ntra
commited on
Commit
β’
28ff501
1
Parent(s):
983a157
Mark 1
Browse files- README.md +2 -2
- app.py +71 -0
- nsfw_model.pkl +3 -0
- requirements.txt +2 -0
- test.ipynb +162 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
+
title: Website Image Safety Analyzer
|
3 |
+
emoji: π§
|
4 |
colorFrom: blue
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastai.vision.all import *
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import base64
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Load the trained model
|
9 |
+
learn = load_learner('nsfw_model.pkl')
|
10 |
+
labels = learn.dls.vocab
|
11 |
+
|
12 |
+
def analyze(url):
|
13 |
+
"""Analyzer function that classifies the images found at the given URL"""
|
14 |
+
|
15 |
+
# Make sure URL starts with http or https
|
16 |
+
# TODO: confirm that the url points to a web page, and not some resource.
|
17 |
+
# Regex could be useful here
|
18 |
+
if not url.startswith(('http://','https://')):
|
19 |
+
url = 'http://'+url
|
20 |
+
|
21 |
+
safety = 'safe' # our return variable
|
22 |
+
|
23 |
+
# Extract html and all img tags
|
24 |
+
html = requests.get(url)
|
25 |
+
soup = BeautifulSoup(html.text, "html.parser")
|
26 |
+
img_elements = soup.find_all("img")
|
27 |
+
|
28 |
+
# Save all src urls that we can clearly tell are img urls.
|
29 |
+
# A better approach would be to use regex here
|
30 |
+
srcs = []
|
31 |
+
for img in img_elements:
|
32 |
+
for v in img.attrs.values():
|
33 |
+
if isinstance(v, str):
|
34 |
+
if v.lower().endswith(('jpg', 'png', 'gif', 'jpeg')):
|
35 |
+
srcs.append(v)
|
36 |
+
|
37 |
+
# Get the images from the urls and classify
|
38 |
+
# If there is a single unsafe image, report it.
|
39 |
+
for src_url in srcs:
|
40 |
+
try:
|
41 |
+
img_data = requests.get(src_url).content
|
42 |
+
temp = 'temp.' + src_url.lower().split('.')[-1]
|
43 |
+
with open(temp, 'wb') as handler:
|
44 |
+
handler.write(img_data)
|
45 |
+
is_nsfw,_,probs = learn.predict(PILImage.create(temp))
|
46 |
+
os.remove(temp)
|
47 |
+
if is_nsfw == "unsafe_searches":
|
48 |
+
safety = 'NOT safe'
|
49 |
+
return safety
|
50 |
+
except Exception as e:
|
51 |
+
pass
|
52 |
+
return safety
|
53 |
+
|
54 |
+
title = "Website Safety Analyzer"
|
55 |
+
description = "**The internet is not safe for children**. Even if we know the 'bad' sites, social media is hard to regulate. \n"+\
|
56 |
+
"This is step one in an attempt to solve that. An image classifier that audits every image at a URL. \n"+\
|
57 |
+
"In this iteration, I classify sites with sexually explicit content as **'NOT safe'**. \n\n"+\
|
58 |
+
"There is a long way to go with NLP for profanity, cyber-bullying, as well as CV for violence, substance abuse, etc. \n"+\
|
59 |
+
"I welcome any help on this. π"
|
60 |
+
examples = ['porhub.com', 'cnn.com', 'xvideos.com', 'www.pinterest.com']
|
61 |
+
enable_queue=True
|
62 |
+
|
63 |
+
iface = gr.Interface(
|
64 |
+
fn=analyze,
|
65 |
+
inputs="text",
|
66 |
+
outputs="text",
|
67 |
+
title=title,
|
68 |
+
description=description,
|
69 |
+
examples=examples,
|
70 |
+
)
|
71 |
+
iface.launch(enable_queue=enable_queue)
|
nsfw_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:018578406ed833284ff69a8198f71c4c71ce537afb0861a602f2240bd3cb3110
|
3 |
+
size 46972399
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
fastai
|
2 |
+
beautifulsoup4
|
test.ipynb
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from fastai.vision.all import *\n",
|
10 |
+
"import gradio as gr\n",
|
11 |
+
"import requests\n",
|
12 |
+
"import base64\n",
|
13 |
+
"from bs4 import BeautifulSoup\n",
|
14 |
+
"import os"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 7,
|
20 |
+
"metadata": {},
|
21 |
+
"outputs": [],
|
22 |
+
"source": [
|
23 |
+
"# Load the trained model\n",
|
24 |
+
"learn = load_learner('nsfw_model.pkl')\n",
|
25 |
+
"labels = learn.dls.vocab\n",
|
26 |
+
"\n",
|
27 |
+
"def analyze(url):\n",
|
28 |
+
" \"\"\"Analyzer function that classifies the images found at the given URL\"\"\"\n",
|
29 |
+
" \n",
|
30 |
+
" # Make sure URL starts with http or https\n",
|
31 |
+
" # TODO: confirm that the url points to a web page, and not some resource.\n",
|
32 |
+
" # Regex could be useful here\n",
|
33 |
+
" if not url.startswith(('http://','https://')):\n",
|
34 |
+
" url = 'http://'+url\n",
|
35 |
+
" \n",
|
36 |
+
" safety = 'safe' # our return variable\n",
|
37 |
+
"\n",
|
38 |
+
" # Extract html and all img tags\n",
|
39 |
+
" html = requests.get(url)\n",
|
40 |
+
" soup = BeautifulSoup(html.text, \"html.parser\")\n",
|
41 |
+
" img_elements = soup.find_all(\"img\")\n",
|
42 |
+
"\n",
|
43 |
+
" # Save all src urls that we can clearly tell are img urls.\n",
|
44 |
+
" # A better approach would be to use regex here\n",
|
45 |
+
" srcs = []\n",
|
46 |
+
" for img in img_elements:\n",
|
47 |
+
" for v in img.attrs.values():\n",
|
48 |
+
" if isinstance(v, str):\n",
|
49 |
+
" if v.lower().endswith(('jpg', 'png', 'gif', 'jpeg')):\n",
|
50 |
+
" srcs.append(v)\n",
|
51 |
+
" \n",
|
52 |
+
" # Get the images from the urls and classify\n",
|
53 |
+
" # If there is a single unsafe image, report it.\n",
|
54 |
+
" for src_url in srcs:\n",
|
55 |
+
" try:\n",
|
56 |
+
" img_data = requests.get(src_url).content\n",
|
57 |
+
" temp = 'temp.' + src_url.lower().split('.')[-1]\n",
|
58 |
+
" with open(temp, 'wb') as handler:\n",
|
59 |
+
" handler.write(img_data)\n",
|
60 |
+
" is_nsfw,_,probs = learn.predict(PILImage.create(temp))\n",
|
61 |
+
" os.remove(temp) \n",
|
62 |
+
" if is_nsfw == \"unsafe_searches\":\n",
|
63 |
+
" safety = 'NOT safe'\n",
|
64 |
+
" return safety\n",
|
65 |
+
" except Exception as e:\n",
|
66 |
+
" pass\n",
|
67 |
+
" return safety"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "code",
|
72 |
+
"execution_count": 11,
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [
|
75 |
+
{
|
76 |
+
"name": "stdout",
|
77 |
+
"output_type": "stream",
|
78 |
+
"text": [
|
79 |
+
"Running on local URL: http://127.0.0.1:7867\n",
|
80 |
+
"\n",
|
81 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"data": {
|
86 |
+
"text/html": [
|
87 |
+
"<div><iframe src=\"http://127.0.0.1:7867/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
88 |
+
],
|
89 |
+
"text/plain": [
|
90 |
+
"<IPython.core.display.HTML object>"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
"metadata": {},
|
94 |
+
"output_type": "display_data"
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"data": {
|
98 |
+
"text/plain": [
|
99 |
+
"(<gradio.routes.App at 0x7f0da61cb1f0>, 'http://127.0.0.1:7867/', None)"
|
100 |
+
]
|
101 |
+
},
|
102 |
+
"execution_count": 11,
|
103 |
+
"metadata": {},
|
104 |
+
"output_type": "execute_result"
|
105 |
+
}
|
106 |
+
],
|
107 |
+
"source": [
|
108 |
+
"title = \"Website Safety Analyzer\"\n",
|
109 |
+
"description = \"**The internet is not safe for children**. Even if we know the 'bad' sites, social media is hard to regulate. \\n\"+\\\n",
|
110 |
+
" \"This is step one in an attempt to solve that. An image classifier that audits every image at a URL. \\n\"+\\\n",
|
111 |
+
" \"In this iteration, I classify sites with sexually explicit content as **'NOT safe'**. \\n\\n\"+\\\n",
|
112 |
+
" \"There is a long way to go with NLP for profanity, cyber-bullying, as well as CV for violence, substance abuse, etc. \\n\"+\\\n",
|
113 |
+
" \"I welcome any help on this. π\"\n",
|
114 |
+
"examples = ['porhub.com', 'cnn.com', 'xvideos.com', 'www.pinterest.com']\n",
|
115 |
+
"enable_queue=True\n",
|
116 |
+
"\n",
|
117 |
+
"iface = gr.Interface(\n",
|
118 |
+
" fn=analyze, \n",
|
119 |
+
" inputs=\"text\", \n",
|
120 |
+
" outputs=\"text\",\n",
|
121 |
+
" title=title,\n",
|
122 |
+
" description=description,\n",
|
123 |
+
" examples=examples,\n",
|
124 |
+
")\n",
|
125 |
+
"iface.launch(enable_queue=enable_queue)"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": null,
|
131 |
+
"metadata": {},
|
132 |
+
"outputs": [],
|
133 |
+
"source": []
|
134 |
+
}
|
135 |
+
],
|
136 |
+
"metadata": {
|
137 |
+
"kernelspec": {
|
138 |
+
"display_name": "Python 3 (ipykernel)",
|
139 |
+
"language": "python",
|
140 |
+
"name": "python3"
|
141 |
+
},
|
142 |
+
"language_info": {
|
143 |
+
"codemirror_mode": {
|
144 |
+
"name": "ipython",
|
145 |
+
"version": 3
|
146 |
+
},
|
147 |
+
"file_extension": ".py",
|
148 |
+
"mimetype": "text/x-python",
|
149 |
+
"name": "python",
|
150 |
+
"nbconvert_exporter": "python",
|
151 |
+
"pygments_lexer": "ipython3",
|
152 |
+
"version": "3.10.6"
|
153 |
+
},
|
154 |
+
"vscode": {
|
155 |
+
"interpreter": {
|
156 |
+
"hash": "ed0e91aaffcefde6eb9bcd4f55fe7652d77471dc031ce772257aa5eb4a54e8f2"
|
157 |
+
}
|
158 |
+
}
|
159 |
+
},
|
160 |
+
"nbformat": 4,
|
161 |
+
"nbformat_minor": 2
|
162 |
+
}
|