|
#include <ATen/ATen.h> |
|
|
|
#include <vector> |
|
|
|
#include "utils/checks.h" |
|
#include "inplace_abn.h" |
|
|
|
at::Tensor reduce_sum(at::Tensor x) { |
|
if (x.ndimension() == 2) { |
|
return x.sum(0); |
|
} else { |
|
auto x_view = x.view({x.size(0), x.size(1), -1}); |
|
return x_view.sum(-1).sum(0); |
|
} |
|
} |
|
|
|
at::Tensor broadcast_to(at::Tensor v, at::Tensor x) { |
|
if (x.ndimension() == 2) { |
|
return v; |
|
} else { |
|
std::vector<int64_t> broadcast_size = {1, -1}; |
|
for (int64_t i = 2; i < x.ndimension(); ++i) |
|
broadcast_size.push_back(1); |
|
|
|
return v.view(broadcast_size); |
|
} |
|
} |
|
|
|
int64_t count(at::Tensor x) { |
|
int64_t count = x.size(0); |
|
for (int64_t i = 2; i < x.ndimension(); ++i) |
|
count *= x.size(i); |
|
|
|
return count; |
|
} |
|
|
|
at::Tensor invert_affine(at::Tensor z, at::Tensor weight, at::Tensor bias, bool affine, float eps) { |
|
if (affine) { |
|
return (z - broadcast_to(bias, z)) / broadcast_to(at::abs(weight) + eps, z); |
|
} else { |
|
return z; |
|
} |
|
} |
|
|
|
std::vector<at::Tensor> mean_var_cpu(at::Tensor x) { |
|
auto num = count(x); |
|
auto mean = reduce_sum(x) / num; |
|
auto diff = x - broadcast_to(mean, x); |
|
auto var = reduce_sum(diff.pow(2)) / num; |
|
|
|
return {mean, var}; |
|
} |
|
|
|
at::Tensor forward_cpu(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias, |
|
bool affine, float eps) { |
|
auto gamma = affine ? at::abs(weight) + eps : at::ones_like(var); |
|
auto mul = at::rsqrt(var + eps) * gamma; |
|
|
|
x.sub_(broadcast_to(mean, x)); |
|
x.mul_(broadcast_to(mul, x)); |
|
if (affine) x.add_(broadcast_to(bias, x)); |
|
|
|
return x; |
|
} |
|
|
|
std::vector<at::Tensor> edz_eydz_cpu(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias, |
|
bool affine, float eps) { |
|
auto edz = reduce_sum(dz); |
|
auto y = invert_affine(z, weight, bias, affine, eps); |
|
auto eydz = reduce_sum(y * dz); |
|
|
|
return {edz, eydz}; |
|
} |
|
|
|
at::Tensor backward_cpu(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias, |
|
at::Tensor edz, at::Tensor eydz, bool affine, float eps) { |
|
auto y = invert_affine(z, weight, bias, affine, eps); |
|
auto mul = affine ? at::rsqrt(var + eps) * (at::abs(weight) + eps) : at::rsqrt(var + eps); |
|
|
|
auto num = count(z); |
|
auto dx = (dz - broadcast_to(edz / num, dz) - y * broadcast_to(eydz / num, dz)) * broadcast_to(mul, dz); |
|
return dx; |
|
} |
|
|
|
void leaky_relu_backward_cpu(at::Tensor z, at::Tensor dz, float slope) { |
|
CHECK_CPU_INPUT(z); |
|
CHECK_CPU_INPUT(dz); |
|
|
|
AT_DISPATCH_FLOATING_TYPES(z.type(), "leaky_relu_backward_cpu", ([&] { |
|
int64_t count = z.numel(); |
|
auto *_z = z.data<scalar_t>(); |
|
auto *_dz = dz.data<scalar_t>(); |
|
|
|
for (int64_t i = 0; i < count; ++i) { |
|
if (_z[i] < 0) { |
|
_z[i] *= 1 / slope; |
|
_dz[i] *= slope; |
|
} |
|
} |
|
})); |
|
} |
|
|
|
void elu_backward_cpu(at::Tensor z, at::Tensor dz) { |
|
CHECK_CPU_INPUT(z); |
|
CHECK_CPU_INPUT(dz); |
|
|
|
AT_DISPATCH_FLOATING_TYPES(z.type(), "elu_backward_cpu", ([&] { |
|
int64_t count = z.numel(); |
|
auto *_z = z.data<scalar_t>(); |
|
auto *_dz = dz.data<scalar_t>(); |
|
|
|
for (int64_t i = 0; i < count; ++i) { |
|
if (_z[i] < 0) { |
|
_z[i] = log1p(_z[i]); |
|
_dz[i] *= (_z[i] + 1.f); |
|
} |
|
} |
|
})); |
|
} |
|
|