Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import traceback | |
import logging | |
logger = logging.getLogger(__name__) | |
from functools import lru_cache | |
from time import time as ttime | |
from torch import Tensor | |
import faiss | |
import librosa | |
import numpy as np | |
import parselmouth | |
import pyworld | |
import torch | |
import torch.nn.functional as F | |
import torchcrepe | |
from scipy import signal | |
from tqdm import tqdm | |
import random | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
import re | |
from functools import partial | |
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000) | |
input_audio_path2wav = {} | |
from LazyImport import lazyload | |
torchcrepe = lazyload("torchcrepe") # Fork Feature. Crepe algo for training and preprocess | |
torch = lazyload("torch") | |
from infer.lib.rmvpe import RMVPE | |
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period): | |
audio = input_audio_path2wav[input_audio_path] | |
f0, t = pyworld.harvest( | |
audio, | |
fs=fs, | |
f0_ceil=f0max, | |
f0_floor=f0min, | |
frame_period=frame_period, | |
) | |
f0 = pyworld.stonemask(audio, f0, t, fs) | |
return f0 | |
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比 | |
# print(data1.max(),data2.max()) | |
rms1 = librosa.feature.rms( | |
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2 | |
) # 每半秒一个点 | |
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2) | |
rms1 = torch.from_numpy(rms1) | |
rms1 = F.interpolate( | |
rms1.unsqueeze(0), size=data2.shape[0], mode="linear" | |
).squeeze() | |
rms2 = torch.from_numpy(rms2) | |
rms2 = F.interpolate( | |
rms2.unsqueeze(0), size=data2.shape[0], mode="linear" | |
).squeeze() | |
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6) | |
data2 *= ( | |
torch.pow(rms1, torch.tensor(1 - rate)) | |
* torch.pow(rms2, torch.tensor(rate - 1)) | |
).numpy() | |
return data2 | |
class Pipeline(object): | |
def __init__(self, tgt_sr, config): | |
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = ( | |
config.x_pad, | |
config.x_query, | |
config.x_center, | |
config.x_max, | |
config.is_half, | |
) | |
self.sr = 16000 # hubert输入采样率 | |
self.window = 160 # 每帧点数 | |
self.t_pad = self.sr * self.x_pad # 每条前后pad时间 | |
self.t_pad_tgt = tgt_sr * self.x_pad | |
self.t_pad2 = self.t_pad * 2 | |
self.t_query = self.sr * self.x_query # 查询切点前后查询时间 | |
self.t_center = self.sr * self.x_center # 查询切点位置 | |
self.t_max = self.sr * self.x_max # 免查询时长阈值 | |
self.device = config.device | |
self.model_rmvpe = RMVPE("%s/rmvpe.pt" % os.environ["rmvpe_root"], is_half=self.is_half, device=self.device) | |
self.f0_method_dict = { | |
"pm": self.get_pm, | |
"harvest": self.get_harvest, | |
"dio": self.get_dio, | |
"rmvpe": self.get_rmvpe, | |
"rmvpe+": self.get_pitch_dependant_rmvpe, | |
"crepe": self.get_f0_official_crepe_computation, | |
"crepe-tiny": partial(self.get_f0_official_crepe_computation, model='model'), | |
"mangio-crepe": self.get_f0_crepe_computation, | |
"mangio-crepe-tiny": partial(self.get_f0_crepe_computation, model='model'), | |
} | |
self.note_dict = [ | |
65.41, 69.30, 73.42, 77.78, 82.41, 87.31, | |
92.50, 98.00, 103.83, 110.00, 116.54, 123.47, | |
130.81, 138.59, 146.83, 155.56, 164.81, 174.61, | |
185.00, 196.00, 207.65, 220.00, 233.08, 246.94, | |
261.63, 277.18, 293.66, 311.13, 329.63, 349.23, | |
369.99, 392.00, 415.30, 440.00, 466.16, 493.88, | |
523.25, 554.37, 587.33, 622.25, 659.25, 698.46, | |
739.99, 783.99, 830.61, 880.00, 932.33, 987.77, | |
1046.50, 1108.73, 1174.66, 1244.51, 1318.51, 1396.91, | |
1479.98, 1567.98, 1661.22, 1760.00, 1864.66, 1975.53, | |
2093.00, 2217.46, 2349.32, 2489.02, 2637.02, 2793.83, | |
2959.96, 3135.96, 3322.44, 3520.00, 3729.31, 3951.07 | |
] | |
# Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device) | |
def get_optimal_torch_device(self, index: int = 0) -> torch.device: | |
if torch.cuda.is_available(): | |
return torch.device( | |
f"cuda:{index % torch.cuda.device_count()}" | |
) # Very fast | |
elif torch.backends.mps.is_available(): | |
return torch.device("mps") | |
return torch.device("cpu") | |
# Fork Feature: Compute f0 with the crepe method | |
def get_f0_crepe_computation( | |
self, | |
x, | |
f0_min, | |
f0_max, | |
p_len, | |
*args, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time. | |
**kwargs, # Either use crepe-tiny "tiny" or crepe "full". Default is full | |
): | |
x = x.astype( | |
np.float32 | |
) # fixes the F.conv2D exception. We needed to convert double to float. | |
x /= np.quantile(np.abs(x), 0.999) | |
torch_device = self.get_optimal_torch_device() | |
audio = torch.from_numpy(x).to(torch_device, copy=True) | |
audio = torch.unsqueeze(audio, dim=0) | |
if audio.ndim == 2 and audio.shape[0] > 1: | |
audio = torch.mean(audio, dim=0, keepdim=True).detach() | |
audio = audio.detach() | |
hop_length = kwargs.get('crepe_hop_length', 160) | |
model = kwargs.get('model', 'full') | |
print("Initiating prediction with a crepe_hop_length of: " + str(hop_length)) | |
pitch: Tensor = torchcrepe.predict( | |
audio, | |
self.sr, | |
hop_length, | |
f0_min, | |
f0_max, | |
model, | |
batch_size=hop_length * 2, | |
device=torch_device, | |
pad=True, | |
) | |
p_len = p_len or x.shape[0] // hop_length | |
# Resize the pitch for final f0 | |
source = np.array(pitch.squeeze(0).cpu().float().numpy()) | |
source[source < 0.001] = np.nan | |
target = np.interp( | |
np.arange(0, len(source) * p_len, len(source)) / p_len, | |
np.arange(0, len(source)), | |
source, | |
) | |
f0 = np.nan_to_num(target) | |
return f0 # Resized f0 | |
def get_f0_official_crepe_computation( | |
self, | |
x, | |
f0_min, | |
f0_max, | |
*args, | |
**kwargs | |
): | |
# Pick a batch size that doesn't cause memory errors on your gpu | |
batch_size = 512 | |
# Compute pitch using first gpu | |
audio = torch.tensor(np.copy(x))[None].float() | |
model = kwargs.get('model', 'full') | |
f0, pd = torchcrepe.predict( | |
audio, | |
self.sr, | |
self.window, | |
f0_min, | |
f0_max, | |
model, | |
batch_size=batch_size, | |
device=self.device, | |
return_periodicity=True, | |
) | |
pd = torchcrepe.filter.median(pd, 3) | |
f0 = torchcrepe.filter.mean(f0, 3) | |
f0[pd < 0.1] = 0 | |
f0 = f0[0].cpu().numpy() | |
return f0 | |
# Fork Feature: Compute pYIN f0 method | |
def get_f0_pyin_computation(self, x, f0_min, f0_max): | |
y, sr = librosa.load("saudio/Sidney.wav", self.sr, mono=True) | |
f0, _, _ = librosa.pyin(y, sr=self.sr, fmin=f0_min, fmax=f0_max) | |
f0 = f0[1:] # Get rid of extra first frame | |
return f0 | |
def get_pm(self, x, p_len, *args, **kwargs): | |
f0 = parselmouth.Sound(x, self.sr).to_pitch_ac( | |
time_step=160 / 16000, | |
voicing_threshold=0.6, | |
pitch_floor=kwargs.get('f0_min'), | |
pitch_ceiling=kwargs.get('f0_max'), | |
).selected_array["frequency"] | |
return np.pad( | |
f0, | |
[[max(0, (p_len - len(f0) + 1) // 2), max(0, p_len - len(f0) - (p_len - len(f0) + 1) // 2)]], | |
mode="constant" | |
) | |
def get_harvest(self, x, *args, **kwargs): | |
f0_spectral = pyworld.harvest( | |
x.astype(np.double), | |
fs=self.sr, | |
f0_ceil=kwargs.get('f0_max'), | |
f0_floor=kwargs.get('f0_min'), | |
frame_period=1000 * kwargs.get('hop_length', 160) / self.sr, | |
) | |
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.sr) | |
def get_dio(self, x, *args, **kwargs): | |
f0_spectral = pyworld.dio( | |
x.astype(np.double), | |
fs=self.sr, | |
f0_ceil=kwargs.get('f0_max'), | |
f0_floor=kwargs.get('f0_min'), | |
frame_period=1000 * kwargs.get('hop_length', 160) / self.sr, | |
) | |
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.sr) | |
def get_rmvpe(self, x, *args, **kwargs): | |
if not hasattr(self, "model_rmvpe"): | |
from infer.lib.rmvpe import RMVPE | |
logger.info( | |
"Loading rmvpe model,%s" % "%s/rmvpe.pt" % os.environ["rmvpe_root"] | |
) | |
self.model_rmvpe = RMVPE( | |
"%s/rmvpe.pt" % os.environ["rmvpe_root"], | |
is_half=self.is_half, | |
device=self.device, | |
) | |
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03) | |
return f0 | |
def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs): | |
return self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max) | |
def autotune_f0(self, f0): | |
autotuned_f0 = [] | |
for freq in f0: | |
closest_notes = [x for x in self.note_dict if abs(x - freq) == min(abs(n - freq) for n in self.note_dict)] | |
autotuned_f0.append(random.choice(closest_notes)) | |
return np.array(autotuned_f0, np.float64) | |
# Fork Feature: Acquire median hybrid f0 estimation calculation | |
def get_f0_hybrid_computation( | |
self, | |
methods_str, | |
input_audio_path, | |
x, | |
f0_min, | |
f0_max, | |
p_len, | |
filter_radius, | |
crepe_hop_length, | |
time_step | |
): | |
# Get various f0 methods from input to use in the computation stack | |
params = {'x': x, 'p_len': p_len, 'f0_min': f0_min, | |
'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius, | |
'crepe_hop_length': crepe_hop_length, 'model': "full" | |
} | |
methods_str = re.search('hybrid\[(.+)\]', methods_str) | |
if methods_str: # Ensure a match was found | |
methods = [method.strip() for method in methods_str.group(1).split('+')] | |
f0_computation_stack = [] | |
print(f"Calculating f0 pitch estimations for methods: {str(methods)}") | |
x = x.astype(np.float32) | |
x /= np.quantile(np.abs(x), 0.999) | |
# Get f0 calculations for all methods specified | |
for method in methods: | |
if method not in self.f0_method_dict: | |
print(f"Method {method} not found.") | |
continue | |
f0 = self.f0_method_dict[method](**params) | |
if method == 'harvest' and filter_radius > 2: | |
f0 = signal.medfilt(f0, 3) | |
f0 = f0[1:] # Get rid of first frame. | |
f0_computation_stack.append(f0) | |
for fc in f0_computation_stack: | |
print(len(fc)) | |
print(f"Calculating hybrid median f0 from the stack of: {str(methods)}") | |
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0) | |
return f0_median_hybrid | |
def get_f0( | |
self, | |
input_audio_path, | |
x, | |
p_len, | |
f0_up_key, | |
f0_method, | |
filter_radius, | |
crepe_hop_length, | |
f0_autotune, | |
inp_f0=None, | |
f0_min=50, | |
f0_max=1100, | |
): | |
global input_audio_path2wav | |
time_step = self.window / self.sr * 1000 | |
f0_min = 50 | |
f0_max = 1100 | |
f0_mel_min = 1127 * np.log(1 + f0_min / 700) | |
f0_mel_max = 1127 * np.log(1 + f0_max / 700) | |
params = {'x': x, 'p_len': p_len, 'f0_up_key': f0_up_key, 'f0_min': f0_min, | |
'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius, | |
'crepe_hop_length': crepe_hop_length, 'model': "full" | |
} | |
if "hybrid" in f0_method: | |
# Perform hybrid median pitch estimation | |
input_audio_path2wav[input_audio_path] = x.astype(np.double) | |
f0 = self.get_f0_hybrid_computation( | |
f0_method,+ | |
input_audio_path, | |
x, | |
f0_min, | |
f0_max, | |
p_len, | |
filter_radius, | |
crepe_hop_length, | |
time_step, | |
) | |
else: | |
f0 = self.f0_method_dict[f0_method](**params) | |
if "privateuseone" in str(self.device): # clean ortruntime memory | |
del self.model_rmvpe.model | |
del self.model_rmvpe | |
logger.info("Cleaning ortruntime memory") | |
if f0_autotune: | |
f0 = self.autotune_f0(f0) | |
f0 *= pow(2, f0_up_key / 12) | |
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) | |
tf0 = self.sr // self.window # 每秒f0点数 | |
if inp_f0 is not None: | |
delta_t = np.round( | |
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1 | |
).astype("int16") | |
replace_f0 = np.interp( | |
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1] | |
) | |
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0] | |
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[ | |
:shape | |
] | |
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) | |
f0bak = f0.copy() | |
f0_mel = 1127 * np.log(1 + f0 / 700) | |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( | |
f0_mel_max - f0_mel_min | |
) + 1 | |
f0_mel[f0_mel <= 1] = 1 | |
f0_mel[f0_mel > 255] = 255 | |
f0_coarse = np.rint(f0_mel).astype(np.int32) | |
return f0_coarse, f0bak # 1-0 | |
def vc( | |
self, | |
model, | |
net_g, | |
sid, | |
audio0, | |
pitch, | |
pitchf, | |
times, | |
index, | |
big_npy, | |
index_rate, | |
version, | |
protect, | |
): # ,file_index,file_big_npy | |
feats = torch.from_numpy(audio0) | |
if self.is_half: | |
feats = feats.half() | |
else: | |
feats = feats.float() | |
if feats.dim() == 2: # double channels | |
feats = feats.mean(-1) | |
assert feats.dim() == 1, feats.dim() | |
feats = feats.view(1, -1) | |
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) | |
inputs = { | |
"source": feats.to(self.device), | |
"padding_mask": padding_mask, | |
"output_layer": 9 if version == "v1" else 12, | |
} | |
t0 = ttime() | |
with torch.no_grad(): | |
logits = model.extract_features(**inputs) | |
feats = model.final_proj(logits[0]) if version == "v1" else logits[0] | |
if protect < 0.5 and pitch is not None and pitchf is not None: | |
feats0 = feats.clone() | |
if ( | |
not isinstance(index, type(None)) | |
and not isinstance(big_npy, type(None)) | |
and index_rate != 0 | |
): | |
npy = feats[0].cpu().numpy() | |
if self.is_half: | |
npy = npy.astype("float32") | |
# _, I = index.search(npy, 1) | |
# npy = big_npy[I.squeeze()] | |
score, ix = index.search(npy, k=8) | |
weight = np.square(1 / score) | |
weight /= weight.sum(axis=1, keepdims=True) | |
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1) | |
if self.is_half: | |
npy = npy.astype("float16") | |
feats = ( | |
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate | |
+ (1 - index_rate) * feats | |
) | |
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) | |
if protect < 0.5 and pitch is not None and pitchf is not None: | |
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute( | |
0, 2, 1 | |
) | |
t1 = ttime() | |
p_len = audio0.shape[0] // self.window | |
if feats.shape[1] < p_len: | |
p_len = feats.shape[1] | |
if pitch is not None and pitchf is not None: | |
pitch = pitch[:, :p_len] | |
pitchf = pitchf[:, :p_len] | |
if protect < 0.5 and pitch is not None and pitchf is not None: | |
pitchff = pitchf.clone() | |
pitchff[pitchf > 0] = 1 | |
pitchff[pitchf < 1] = protect | |
pitchff = pitchff.unsqueeze(-1) | |
feats = feats * pitchff + feats0 * (1 - pitchff) | |
feats = feats.to(feats0.dtype) | |
p_len = torch.tensor([p_len], device=self.device).long() | |
with torch.no_grad(): | |
hasp = pitch is not None and pitchf is not None | |
arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid) | |
audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy() | |
del hasp, arg | |
del feats, p_len, padding_mask | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
t2 = ttime() | |
times[0] += t1 - t0 | |
times[2] += t2 - t1 | |
return audio1 | |
def process_t(self, t, s, window, audio_pad, pitch, pitchf, times, index, big_npy, index_rate, version, protect, t_pad_tgt, if_f0, sid, model, net_g): | |
t = t // window * window | |
if if_f0 == 1: | |
return self.vc( | |
model, | |
net_g, | |
sid, | |
audio_pad[s : t + t_pad_tgt + window], | |
pitch[:, s // window : (t + t_pad_tgt) // window], | |
pitchf[:, s // window : (t + t_pad_tgt) // window], | |
times, | |
index, | |
big_npy, | |
index_rate, | |
version, | |
protect, | |
)[t_pad_tgt : -t_pad_tgt] | |
else: | |
return self.vc( | |
model, | |
net_g, | |
sid, | |
audio_pad[s : t + t_pad_tgt + window], | |
None, | |
None, | |
times, | |
index, | |
big_npy, | |
index_rate, | |
version, | |
protect, | |
)[t_pad_tgt : -t_pad_tgt] | |
def pipeline( | |
self, | |
model, | |
net_g, | |
sid, | |
audio, | |
input_audio_path, | |
times, | |
f0_up_key, | |
f0_method, | |
file_index, | |
index_rate, | |
if_f0, | |
filter_radius, | |
tgt_sr, | |
resample_sr, | |
rms_mix_rate, | |
version, | |
protect, | |
crepe_hop_length, | |
f0_autotune, | |
f0_file=None, | |
f0_min=50, | |
f0_max=1100 | |
): | |
if ( | |
file_index != "" | |
# and file_big_npy != "" | |
# and os.path.exists(file_big_npy) == True | |
and os.path.exists(file_index) | |
and index_rate != 0 | |
): | |
try: | |
index = faiss.read_index(file_index) | |
# big_npy = np.load(file_big_npy) | |
big_npy = index.reconstruct_n(0, index.ntotal) | |
except: | |
traceback.print_exc() | |
index = big_npy = None | |
else: | |
index = big_npy = None | |
audio = signal.filtfilt(bh, ah, audio) | |
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect") | |
opt_ts = [] | |
if audio_pad.shape[0] > self.t_max: | |
audio_sum = np.zeros_like(audio) | |
for i in range(self.window): | |
audio_sum += audio_pad[i : i - self.window] | |
for t in range(self.t_center, audio.shape[0], self.t_center): | |
opt_ts.append( | |
t | |
- self.t_query | |
+ np.where( | |
np.abs(audio_sum[t - self.t_query : t + self.t_query]) | |
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min() | |
)[0][0] | |
) | |
s = 0 | |
audio_opt = [] | |
t = None | |
t1 = ttime() | |
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect") | |
p_len = audio_pad.shape[0] // self.window | |
inp_f0 = None | |
if hasattr(f0_file, "name"): | |
try: | |
with open(f0_file.name, "r") as f: | |
lines = f.read().strip("\n").split("\n") | |
inp_f0 = [] | |
for line in lines: | |
inp_f0.append([float(i) for i in line.split(",")]) | |
inp_f0 = np.array(inp_f0, dtype="float32") | |
except: | |
traceback.print_exc() | |
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() | |
pitch, pitchf = None, None | |
if if_f0: | |
pitch, pitchf = self.get_f0( | |
input_audio_path, | |
audio_pad, | |
p_len, | |
f0_up_key, | |
f0_method, | |
filter_radius, | |
crepe_hop_length, | |
f0_autotune, | |
inp_f0, | |
f0_min, | |
f0_max | |
) | |
pitch = pitch[:p_len] | |
pitchf = pitchf[:p_len] | |
if self.device == "mps" or "xpu" in self.device: | |
pitchf = pitchf.astype(np.float32) | |
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long() | |
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float() | |
t2 = ttime() | |
times[1] += t2 - t1 | |
with tqdm(total=len(opt_ts), desc="Processing", unit="window") as pbar: | |
for i, t in enumerate(opt_ts): | |
t = t // self.window * self.window | |
start = s | |
end = t + self.t_pad2 + self.window | |
audio_slice = audio_pad[start:end] | |
pitch_slice = pitch[:, start // self.window:end // self.window] if if_f0 else None | |
pitchf_slice = pitchf[:, start // self.window:end // self.window] if if_f0 else None | |
audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt]) | |
s = t | |
pbar.update(1) | |
pbar.refresh() | |
audio_slice = audio_pad[t:] | |
pitch_slice = pitch[:, t // self.window:] if if_f0 and t is not None else pitch | |
pitchf_slice = pitchf[:, t // self.window:] if if_f0 and t is not None else pitchf | |
audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt]) | |
audio_opt = np.concatenate(audio_opt) | |
if rms_mix_rate != 1: | |
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate) | |
if tgt_sr != resample_sr >= 16000: | |
audio_opt = librosa.resample( | |
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr | |
) | |
audio_max = np.abs(audio_opt).max() / 0.99 | |
max_int16 = 32768 | |
if audio_max > 1: | |
max_int16 /= audio_max | |
audio_opt = (audio_opt * max_int16).astype(np.int16) | |
del pitch, pitchf, sid | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
print("Returning completed audio...") | |
print("-------------------") | |
return audio_opt | |