import gradio as gr from utils.hparams import hparams from preprocessing.data_gen_utils import get_pitch_parselmouth,get_pitch_crepe import numpy as np import matplotlib.pyplot as plt import IPython.display as ipd import utils import librosa import torchcrepe from infer import * import logging from infer_tools.infer_tool import * import io def render_audio(audio_file): print(audio_file) ############ logging.getLogger('numba').setLevel(logging.WARNING) # 工程文件夹名,训练时用的那个 project_name = "Unnamed" model_path = f'./checkpoints/Unnamed/model_ckpt_steps_192000.ckpt' config_path=f'./checkpoints/Unnamed/config.yaml' hubert_gpu=True svc_model = Svc(project_name,config_path,hubert_gpu, model_path) print('model loaded') wav_fn = audio_file demoaudio, sr = librosa.load(wav_fn) key = 0 # 音高调整,支持正负(半音) # 加速倍数 pndm_speedup = 20 wav_gen='queeeeee.wav'#直接改后缀可以保存不同格式音频,如flac可无损压缩 f0_tst, f0_pred, audio = run_clip(svc_model,file_path=wav_fn, key=key, acc=pndm_speedup, use_crepe=True, use_pe=True, thre=0.05, use_gt_mel=False, add_noise_step=500,project_name=project_name,out_path=wav_gen) def segment(audio): pass # Implement your image segmentation model here... demo = gr.Blocks() with demo: gr.Markdown("# **

DIFF-SVC Inference

**") gr.Markdown( """

Render whatever model you want with this space!

""" ) ckpt_file = gr.File(label= 'Load your CKPT', type="file") config_file = gr.File(label= 'Load your Config File', type="file") audio_file = gr.Audio(label = 'Load your WAV', type="filepath") gr.Slider(2, 20, value=4) b1 = gr.Button("Render") b1.click(fn=render_audio, inputs=audio_file) demo.launch()