Kangarroar's picture
Upload 154 files
ed1cdd1
raw
history blame
No virus
9.29 kB
import copy
import os
import random
from typing import Optional, Tuple
import librosa
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as t_func
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
from utils import hparams
class Hubert(nn.Module):
def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
super().__init__()
self._mask = mask
self.feature_extractor = FeatureExtractor()
self.feature_projection = FeatureProjection()
self.positional_embedding = PositionalConvEmbedding()
self.norm = nn.LayerNorm(768)
self.dropout = nn.Dropout(0.1)
self.encoder = TransformerEncoder(
nn.TransformerEncoderLayer(
768, 12, 3072, activation="gelu", batch_first=True
),
12,
)
self.proj = nn.Linear(768, 256)
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
self.label_embedding = nn.Embedding(num_label_embeddings, 256)
def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
mask = None
if self.training and self._mask:
mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
x[mask] = self.masked_spec_embed.to(x.dtype)
return x, mask
def encode(
self, x: torch.Tensor, layer: Optional[int] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
x = self.feature_extractor(x)
x = self.feature_projection(x.transpose(1, 2))
x, mask = self.mask(x)
x = x + self.positional_embedding(x)
x = self.dropout(self.norm(x))
x = self.encoder(x, output_layer=layer)
return x, mask
def logits(self, x: torch.Tensor) -> torch.Tensor:
logits = torch.cosine_similarity(
x.unsqueeze(2),
self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
dim=-1,
)
return logits / 0.1
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
x, mask = self.encode(x)
x = self.proj(x)
logits = self.logits(x)
return logits, mask
class HubertSoft(Hubert):
def __init__(self):
super().__init__()
# @torch.inference_mode()
def units(self, wav: torch.Tensor) -> torch.Tensor:
wav = torch.nn.functional.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
x, _ = self.encode(wav)
return self.proj(x)
def forward(self, wav: torch.Tensor):
return self.units(wav)
class FeatureExtractor(nn.Module):
def __init__(self):
super().__init__()
self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
self.norm0 = nn.GroupNorm(512, 512)
self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = t_func.gelu(self.norm0(self.conv0(x)))
x = t_func.gelu(self.conv1(x))
x = t_func.gelu(self.conv2(x))
x = t_func.gelu(self.conv3(x))
x = t_func.gelu(self.conv4(x))
x = t_func.gelu(self.conv5(x))
x = t_func.gelu(self.conv6(x))
return x
class FeatureProjection(nn.Module):
def __init__(self):
super().__init__()
self.norm = nn.LayerNorm(512)
self.projection = nn.Linear(512, 768)
self.dropout = nn.Dropout(0.1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.norm(x)
x = self.projection(x)
x = self.dropout(x)
return x
class PositionalConvEmbedding(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv1d(
768,
768,
kernel_size=128,
padding=128 // 2,
groups=16,
)
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.conv(x.transpose(1, 2))
x = t_func.gelu(x[:, :, :-1])
return x.transpose(1, 2)
class TransformerEncoder(nn.Module):
def __init__(
self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
) -> None:
super(TransformerEncoder, self).__init__()
self.layers = nn.ModuleList(
[copy.deepcopy(encoder_layer) for _ in range(num_layers)]
)
self.num_layers = num_layers
def forward(
self,
src: torch.Tensor,
mask: torch.Tensor = None,
src_key_padding_mask: torch.Tensor = None,
output_layer: Optional[int] = None,
) -> torch.Tensor:
output = src
for layer in self.layers[:output_layer]:
output = layer(
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
)
return output
def _compute_mask(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
device: torch.device,
min_masks: int = 0,
) -> torch.Tensor:
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
)
# compute number of masked spans in batch
num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
num_masked_spans = max(num_masked_spans, min_masks)
# make sure num masked indices <= sequence_length
if num_masked_spans * mask_length > sequence_length:
num_masked_spans = sequence_length // mask_length
# SpecAugment mask to fill
mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
# uniform distribution to sample from, make sure that offset samples are < sequence_length
uniform_dist = torch.ones(
(batch_size, sequence_length - (mask_length - 1)), device=device
)
# get random indices to mask
mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
# expand masked indices to masked spans
mask_indices = (
mask_indices.unsqueeze(dim=-1)
.expand((batch_size, num_masked_spans, mask_length))
.reshape(batch_size, num_masked_spans * mask_length)
)
offsets = (
torch.arange(mask_length, device=device)[None, None, :]
.expand((batch_size, num_masked_spans, mask_length))
.reshape(batch_size, num_masked_spans * mask_length)
)
mask_idxs = mask_indices + offsets
# scatter indices to mask
mask = mask.scatter(1, mask_idxs, True)
return mask
def hubert_soft(
path: str
) -> HubertSoft:
r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
Args:
path (str): path of a pretrained model
"""
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
hubert = HubertSoft()
checkpoint = torch.load(path)
consume_prefix_in_state_dict_if_present(checkpoint, "module.")
hubert.load_state_dict(checkpoint)
hubert.eval().to(dev)
return hubert
def get_units(hbt_soft, raw_wav_path, dev=torch.device('cuda')):
wav, sr = librosa.load(raw_wav_path, sr=None)
assert (sr >= 16000)
if len(wav.shape) > 1:
wav = librosa.to_mono(wav)
if sr != 16000:
wav16 = librosa.resample(wav, sr, 16000)
else:
wav16 = wav
dev = torch.device("cuda" if (dev == torch.device('cuda') and torch.cuda.is_available()) else "cpu")
torch.cuda.is_available() and torch.cuda.empty_cache()
with torch.inference_mode():
units = hbt_soft.units(torch.FloatTensor(wav16.astype(float)).unsqueeze(0).unsqueeze(0).to(dev))
return units
def get_end_file(dir_path, end):
file_list = []
for root, dirs, files in os.walk(dir_path):
files = [f for f in files if f[0] != '.']
dirs[:] = [d for d in dirs if d[0] != '.']
for f_file in files:
if f_file.endswith(end):
file_list.append(os.path.join(root, f_file).replace("\\", "/"))
return file_list
if __name__ == '__main__':
from pathlib import Path
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# hubert的模型路径
hbt_model = hubert_soft(str(list(Path(hparams['hubert_path']).home().rglob('*.pt'))[0]))
# 这个不用改,自动在根目录下所有wav的同文件夹生成其对应的npy
file_lists = list(Path(hparams['raw_data_dir']).rglob('*.wav'))
nums = len(file_lists)
count = 0
for wav_path in file_lists:
npy_path = wav_path.with_suffix(".npy")
npy_content = get_units(hbt_model, wav_path).cpu().numpy()[0]
np.save(str(npy_path), npy_content)
count += 1
print(f"hubert process:{round(count * 100 / nums, 2)}%")