File size: 13,084 Bytes
ed1cdd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
433b568
bf3bc35
ed1cdd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db79df6
ed1cdd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db79df6
ed1cdd1
 
db79df6
ed1cdd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db79df6
 
ed1cdd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import hashlib
import json
import os
import time
from io import BytesIO
from pathlib import Path

import librosa
import numpy as np
import soundfile
import torch

import utils
from modules.fastspeech.pe import PitchExtractor
from network.diff.candidate_decoder import FFT
from network.diff.diffusion import GaussianDiffusion
from network.diff.net import DiffNet
from network.vocoders.base_vocoder import VOCODERS, get_vocoder_cls
from preprocessing.data_gen_utils import get_pitch_parselmouth, get_pitch_crepe, get_pitch_world
from preprocessing.hubertinfer import Hubertencoder
from utils.hparams import hparams, set_hparams
from utils.pitch_utils import denorm_f0, norm_interp_f0
map_location=torch.device('cpu')
os.environ["CUDA_VISIBLE_DEVICES"] = ""
if os.path.exists("chunks_temp.json"):
    os.remove("chunks_temp.json")


def read_temp(file_name):
    if not os.path.exists(file_name):
        with open(file_name, "w") as f:
            f.write(json.dumps({"info": "temp_dict"}))
        return {}
    else:
        try:
            with open(file_name, "r") as f:
                data = f.read()
            data_dict = json.loads(data)
            if os.path.getsize(file_name) > 50 * 1024 * 1024:
                f_name = file_name.split("/")[-1]
                print(f"clean {f_name}")
                for wav_hash in list(data_dict.keys()):
                    if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
                        del data_dict[wav_hash]
        except Exception as e:
            print(e)
            print(f"{file_name} error,auto rebuild file")
            data_dict = {"info": "temp_dict"}
        return data_dict


f0_dict = read_temp("./infer_tools/f0_temp.json")


def write_temp(file_name, data):
    with open(file_name, "w") as f:
        f.write(json.dumps(data))


def timeit(func):
    def run(*args, **kwargs):
        t = time.time()
        res = func(*args, **kwargs)
        print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
        return res

    return run


def format_wav(audio_path):
    if Path(audio_path).suffix=='.wav':
        return
    raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True,sr=None)
    soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)


def fill_a_to_b(a, b):
    if len(a) < len(b):
        for _ in range(0, len(b) - len(a)):
            a.append(a[0])


def get_end_file(dir_path, end):
    file_lists = []
    for root, dirs, files in os.walk(dir_path):
        files = [f for f in files if f[0] != '.']
        dirs[:] = [d for d in dirs if d[0] != '.']
        for f_file in files:
            if f_file.endswith(end):
                file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
    return file_lists


def mkdir(paths: list):
    for path in paths:
        if not os.path.exists(path):
            os.mkdir(path)


def get_md5(content):
    return hashlib.new("md5", content).hexdigest()


class Svc:
    def __init__(self, project_name, config_name, hubert_gpu, model_path):
        self.project_name = project_name
        self.DIFF_DECODERS = {
            'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins']),
            'fft': lambda hp: FFT(
                hp['hidden_size'], hp['dec_layers'], hp['dec_ffn_kernel_size'], hp['num_heads']),
        }

        self.model_path = model_path
        self.dev = torch.device("cpu")

        self._ = set_hparams(config=config_name, exp_name=self.project_name, infer=True,
                             reset=True,
                             hparams_str='',
                             print_hparams=False)

        self.mel_bins = hparams['audio_num_mel_bins']
        self.model = GaussianDiffusion(
            phone_encoder=Hubertencoder(hparams['hubert_path']),
            out_dims=self.mel_bins, denoise_fn=self.DIFF_DECODERS[hparams['diff_decoder_type']](hparams),
            timesteps=hparams['timesteps'],
            K_step=hparams['K_step'],
            loss_type=hparams['diff_loss_type'],
            spec_min=hparams['spec_min'], spec_max=hparams['spec_max'],
        )
        self.load_ckpt()
        self.model.cpu()
        hparams['hubert_gpu'] = hubert_gpu
        self.hubert = Hubertencoder(hparams['hubert_path'])
        self.pe = PitchExtractor().cpu()
        utils.load_ckpt(self.pe, hparams['pe_ckpt'], 'model', strict=True)
        self.pe.eval()
        self.vocoder = get_vocoder_cls(hparams)()

    def load_ckpt(self, model_name='model', force=True, strict=True):
        utils.load_ckpt(self.model, self.model_path, model_name, force, strict)

    def infer(self, in_path, key, acc, use_pe=True, use_crepe=True, thre=0.05, singer=False, **kwargs):
        batch = self.pre(in_path, acc, use_crepe, thre)
        spk_embed = batch.get('spk_embed') if not hparams['use_spk_id'] else batch.get('spk_ids')
        hubert = batch['hubert']
        ref_mels = batch["mels"]
        energy=batch['energy']
        mel2ph = batch['mel2ph']
        batch['f0'] = batch['f0'] + (key / 12)
        batch['f0'][batch['f0']>np.log2(hparams['f0_max'])]=0
        f0 = batch['f0']
        uv = batch['uv']
        @timeit
        def diff_infer():
            outputs = self.model(
                hubert.cpu(), spk_embed=spk_embed, mel2ph=mel2ph.cpu(), f0=f0.cpu(), uv=uv.cpu(),energy=energy.cpu(),
                ref_mels=ref_mels.cpu(),
                infer=True, **kwargs)
            return outputs
        outputs=diff_infer()
        batch['outputs'] = self.model.out2mel(outputs['mel_out'])
        batch['mel2ph_pred'] = outputs['mel2ph']
        batch['f0_gt'] = denorm_f0(batch['f0'], batch['uv'], hparams)
        if use_pe:
            batch['f0_pred'] = self.pe(outputs['mel_out'])['f0_denorm_pred'].detach()
        else:
            batch['f0_pred'] = outputs.get('f0_denorm')
        return self.after_infer(batch, singer, in_path)

    @timeit
    def after_infer(self, prediction, singer, in_path):
        for k, v in prediction.items():
            if type(v) is torch.Tensor:
                prediction[k] = v.cpu().numpy()

        # remove paddings
        mel_gt = prediction["mels"]
        mel_gt_mask = np.abs(mel_gt).sum(-1) > 0

        mel_pred = prediction["outputs"]
        mel_pred_mask = np.abs(mel_pred).sum(-1) > 0
        mel_pred = mel_pred[mel_pred_mask]
        mel_pred = np.clip(mel_pred, hparams['mel_vmin'], hparams['mel_vmax'])

        f0_gt = prediction.get("f0_gt")
        f0_pred = prediction.get("f0_pred")
        if f0_pred is not None:
            f0_gt = f0_gt[mel_gt_mask]
        if len(f0_pred) > len(mel_pred_mask):
            f0_pred = f0_pred[:len(mel_pred_mask)]
        f0_pred = f0_pred[mel_pred_mask]
        torch.cuda.is_available() and torch.cuda.empty_cache()

        if singer:
            data_path = in_path.replace("batch", "singer_data")
            mel_path = data_path[:-4] + "_mel.npy"
            f0_path = data_path[:-4] + "_f0.npy"
            np.save(mel_path, mel_pred)
            np.save(f0_path, f0_pred)
        wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred)
        return f0_gt, f0_pred, wav_pred

    def temporary_dict2processed_input(self, item_name, temp_dict, use_crepe=True, thre=0.05):
        '''
            process data in temporary_dicts
        '''

        binarization_args = hparams['binarization_args']

        @timeit
        def get_pitch(wav, mel):
            # get ground truth f0 by self.get_pitch_algorithm
            global f0_dict
            if use_crepe:
                md5 = get_md5(wav)
                if f"{md5}_gt" in f0_dict.keys():
                    print("load temp crepe f0")
                    gt_f0 = np.array(f0_dict[f"{md5}_gt"]["f0"])
                    coarse_f0 = np.array(f0_dict[f"{md5}_coarse"]["f0"])
                else:
                    torch.cuda.is_available() and torch.cuda.empty_cache()
                    gt_f0, coarse_f0 = get_pitch_crepe(wav, mel, hparams, thre)
                f0_dict[f"{md5}_gt"] = {"f0": gt_f0.tolist(), "time": int(time.time())}
                f0_dict[f"{md5}_coarse"] = {"f0": coarse_f0.tolist(), "time": int(time.time())}
                write_temp("./infer_tools/f0_temp.json", f0_dict)
            else:
                md5 = get_md5(wav)
                if f"{md5}_gt_harvest" in f0_dict.keys():
                    print("load temp harvest f0")
                    gt_f0 = np.array(f0_dict[f"{md5}_gt_harvest"]["f0"])
                    coarse_f0 = np.array(f0_dict[f"{md5}_coarse_harvest"]["f0"])
                else:
                    gt_f0, coarse_f0 = get_pitch_world(wav, mel, hparams)
                f0_dict[f"{md5}_gt_harvest"] = {"f0": gt_f0.tolist(), "time": int(time.time())}
                f0_dict[f"{md5}_coarse_harvest"] = {"f0": coarse_f0.tolist(), "time": int(time.time())}
                write_temp("./infer_tools/f0_temp.json", f0_dict)
            processed_input['f0'] = gt_f0
            processed_input['pitch'] = coarse_f0

        def get_align(mel, phone_encoded):
            mel2ph = np.zeros([mel.shape[0]], int)
            start_frame = 0
            ph_durs = mel.shape[0] / phone_encoded.shape[0]
            if hparams['debug']:
                print(mel.shape, phone_encoded.shape, mel.shape[0] / phone_encoded.shape[0])
            for i_ph in range(phone_encoded.shape[0]):
                end_frame = int(i_ph * ph_durs + ph_durs + 0.5)
                mel2ph[start_frame:end_frame + 1] = i_ph + 1
                start_frame = end_frame + 1

            processed_input['mel2ph'] = mel2ph

        if hparams['vocoder'] in VOCODERS:
            wav, mel = VOCODERS[hparams['vocoder']].wav2spec(temp_dict['wav_fn'])
        else:
            wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(temp_dict['wav_fn'])
        processed_input = {
            'item_name': item_name, 'mel': mel,
            'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0]
        }
        processed_input = {**temp_dict, **processed_input}  # merge two dicts

        if binarization_args['with_f0']:
            get_pitch(wav, mel)
        if binarization_args['with_hubert']:
            st = time.time()
            hubert_encoded = processed_input['hubert'] = self.hubert.encode(temp_dict['wav_fn'])
            et = time.time()
            dev = 'cuda' if hparams['hubert_gpu'] and torch.cuda.is_available() else 'cpu'
            print(f'hubert (on {dev}) time used {et - st}')

            if binarization_args['with_align']:
                get_align(mel, hubert_encoded)
        return processed_input

    def pre(self, wav_fn, accelerate, use_crepe=True, thre=0.05):
        if isinstance(wav_fn, BytesIO):
            item_name = self.project_name
        else:
            song_info = wav_fn.split('/')
            item_name = song_info[-1].split('.')[-2]
        temp_dict = {'wav_fn': wav_fn, 'spk_id': self.project_name}

        temp_dict = self.temporary_dict2processed_input(item_name, temp_dict, use_crepe, thre)
        hparams['pndm_speedup'] = accelerate
        batch = processed_input2batch([getitem(temp_dict)])
        return batch


def getitem(item):
    max_frames = hparams['max_frames']
    spec = torch.Tensor(item['mel'])[:max_frames]
    energy = (spec.exp() ** 2).sum(-1).sqrt()
    mel2ph = torch.LongTensor(item['mel2ph'])[:max_frames] if 'mel2ph' in item else None
    f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams)
    hubert = torch.Tensor(item['hubert'][:hparams['max_input_tokens']])
    pitch = torch.LongTensor(item.get("pitch"))[:max_frames]
    sample = {
        "item_name": item['item_name'],
        "hubert": hubert,
        "mel": spec,
        "pitch": pitch,
        "energy": energy,
        "f0": f0,
        "uv": uv,
        "mel2ph": mel2ph,
        "mel_nonpadding": spec.abs().sum(-1) > 0,
    }
    return sample


def processed_input2batch(samples):
    '''
        Args:
            samples: one batch of processed_input
        NOTE:
            the batch size is controlled by hparams['max_sentences']
    '''
    if len(samples) == 0:
        return {}
    item_names = [s['item_name'] for s in samples]
    hubert = utils.collate_2d([s['hubert'] for s in samples], 0.0)
    f0 = utils.collate_1d([s['f0'] for s in samples], 0.0)
    pitch = utils.collate_1d([s['pitch'] for s in samples])
    uv = utils.collate_1d([s['uv'] for s in samples])
    energy = utils.collate_1d([s['energy'] for s in samples], 0.0)
    mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \
        if samples[0]['mel2ph'] is not None else None
    mels = utils.collate_2d([s['mel'] for s in samples], 0.0)
    mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples])

    batch = {
        'item_name': item_names,
        'nsamples': len(samples),
        'hubert': hubert,
        'mels': mels,
        'mel_lengths': mel_lengths,
        'mel2ph': mel2ph,
        'energy': energy,
        'pitch': pitch,
        'f0': f0,
        'uv': uv,
    }
    return batch