haritsahm commited on
Commit
4adfcec
1 Parent(s): 4191136

code cleanup

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -38,26 +38,26 @@ def visualize_instance_seg_mask(mask):
38
  def query_image(img):
39
  data = {"image": img}
40
  batch = preprocess(data)
41
-
42
  network.eval()
43
  with torch.no_grad():
44
  pred = inference(batch['image'].unsqueeze(dim=0), network)
45
-
46
  batch["pred"] = pred
47
  for k,v in batch["pred"].items():
48
  batch["pred"][k] = v.squeeze(dim=0)
49
-
50
  batch = postprocess(batch)
51
-
52
  result = visualize_instance_seg_mask(batch["type_map"].squeeze())
53
-
54
  # Combine image
55
  result = batch["image"].permute(1, 2, 0).cpu().numpy() * 0.5 + result * 0.5
56
-
57
  # Solve rotating problem
58
  result = np.fliplr(result)
59
  result = np.rot90(result, k=1)
60
-
61
  return result
62
 
63
  # load Markdown file
@@ -66,11 +66,11 @@ with open('Description.md','r') as file:
66
 
67
  demo = gr.Interface(
68
  query_image,
69
- inputs=[gr.Image(type="filepath")],
70
  outputs="image",
71
  title="Medical Image Classification with MONAI - Pathology Nuclei Segmentation Classification",
72
  description = markdown_content,
73
- examples=example_files
74
  )
75
 
76
  demo.queue(concurrency_count=20).launch()
 
38
  def query_image(img):
39
  data = {"image": img}
40
  batch = preprocess(data)
41
+
42
  network.eval()
43
  with torch.no_grad():
44
  pred = inference(batch['image'].unsqueeze(dim=0), network)
45
+
46
  batch["pred"] = pred
47
  for k,v in batch["pred"].items():
48
  batch["pred"][k] = v.squeeze(dim=0)
49
+
50
  batch = postprocess(batch)
51
+
52
  result = visualize_instance_seg_mask(batch["type_map"].squeeze())
53
+
54
  # Combine image
55
  result = batch["image"].permute(1, 2, 0).cpu().numpy() * 0.5 + result * 0.5
56
+
57
  # Solve rotating problem
58
  result = np.fliplr(result)
59
  result = np.rot90(result, k=1)
60
+
61
  return result
62
 
63
  # load Markdown file
 
66
 
67
  demo = gr.Interface(
68
  query_image,
69
+ inputs=[gr.Image(type="filepath")],
70
  outputs="image",
71
  title="Medical Image Classification with MONAI - Pathology Nuclei Segmentation Classification",
72
  description = markdown_content,
73
+ examples=example_files,
74
  )
75
 
76
  demo.queue(concurrency_count=20).launch()