Spaces:
Build error
Build error
Upload 6 files
Browse files- Dockerfile +43 -0
- app.py +1107 -0
- requirements.txt +16 -0
- schema.py +87 -0
- summ.py +68 -0
- utils.py +116 -0
Dockerfile
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
RUN apt update && \
|
4 |
+
apt install -y bash \
|
5 |
+
poppler-utils \
|
6 |
+
tesseract-ocr \
|
7 |
+
libtesseract-dev \
|
8 |
+
build-essential \
|
9 |
+
git \
|
10 |
+
curl \
|
11 |
+
ca-certificates \
|
12 |
+
python3 \
|
13 |
+
python3-pip && \
|
14 |
+
rm -rf /var/lib/apt/lists
|
15 |
+
|
16 |
+
|
17 |
+
WORKDIR /code
|
18 |
+
|
19 |
+
COPY ./requirements.txt /code/requirements.txt
|
20 |
+
|
21 |
+
# Set up a new user named "user" with user ID 1000
|
22 |
+
RUN useradd -m -u 1000 user
|
23 |
+
|
24 |
+
# Switch to the "user" user
|
25 |
+
USER user
|
26 |
+
|
27 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
28 |
+
|
29 |
+
RUN [ "python", "-c", "import nltk; nltk.download('punkt')" ]
|
30 |
+
|
31 |
+
# Set home to the user's home directory
|
32 |
+
ENV HOME=/home/user \
|
33 |
+
PATH=/home/user/.local/bin:$PATH
|
34 |
+
|
35 |
+
# Set the working directory to the user's home directory
|
36 |
+
WORKDIR $HOME/app
|
37 |
+
|
38 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
39 |
+
COPY --chown=user . $HOME/app
|
40 |
+
|
41 |
+
COPY . .
|
42 |
+
|
43 |
+
CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
|
app.py
ADDED
@@ -0,0 +1,1107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Author: Firqa Aqila Noor Arasyi
|
2 |
+
# Date: 2023-12-04
|
3 |
+
|
4 |
+
|
5 |
+
import os
|
6 |
+
import io
|
7 |
+
import json
|
8 |
+
import pandas as pd
|
9 |
+
import streamlit as st
|
10 |
+
from stqdm import stqdm
|
11 |
+
from ast import literal_eval
|
12 |
+
from tempfile import NamedTemporaryFile
|
13 |
+
|
14 |
+
import PyPDF2
|
15 |
+
import pdf2image
|
16 |
+
import pytesseract
|
17 |
+
from utils import *
|
18 |
+
from schema import *
|
19 |
+
from summ import get_summ
|
20 |
+
from datetime import datetime
|
21 |
+
import time
|
22 |
+
import base64
|
23 |
+
import string
|
24 |
+
import random
|
25 |
+
import numpy as np
|
26 |
+
|
27 |
+
from langchain.llms import OpenAI
|
28 |
+
from langchain.chains import RetrievalQA
|
29 |
+
from langchain.vectorstores import Chroma
|
30 |
+
from langchain.chat_models import ChatOpenAI
|
31 |
+
from langchain.document_loaders import TextLoader
|
32 |
+
from chromadb.utils import embedding_functions
|
33 |
+
from unstructured.partition.pdf import partition_pdf
|
34 |
+
from unstructured.staging.base import elements_to_json
|
35 |
+
from langchain.text_splitter import CharacterTextSplitter
|
36 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
37 |
+
from langchain.chains import create_extraction_chain
|
38 |
+
|
39 |
+
from Bio import Entrez
|
40 |
+
nltk.download("punkt")
|
41 |
+
|
42 |
+
os.environ['OPENAI_API_KEY'] = os.getenv("OPENAI_API_KEY")
|
43 |
+
Entrez.email = os.getenv("ENTREZ_EMAIL")
|
44 |
+
Entrez.api_key = os.getenv("ENTREZ_API_KEY")
|
45 |
+
|
46 |
+
fold = -1
|
47 |
+
buffer = io.BytesIO()
|
48 |
+
|
49 |
+
st.cache_data()
|
50 |
+
def convert_df(df):
|
51 |
+
return df.to_csv().encode("utf-8")
|
52 |
+
|
53 |
+
# Function to create a download link for an Excel file
|
54 |
+
# def create_excel_download_link(df, file_name):
|
55 |
+
# output = io.BytesIO()
|
56 |
+
# with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
|
57 |
+
# df.to_excel(writer, sheet_name='Sheet1', index=False)
|
58 |
+
# excel_data = output.getvalue()
|
59 |
+
# st.download_button(label="Download Excel File", data=excel_data, key=file_name, file_name=f"{file_name}.xlsx")
|
60 |
+
|
61 |
+
class Journal:
|
62 |
+
|
63 |
+
def __init__(self, name, bytes):
|
64 |
+
self.name = name
|
65 |
+
self.bytes = bytes
|
66 |
+
|
67 |
+
def __repr__(self):
|
68 |
+
return f"Journal(name='{self.name}', bytes='{self.bytes}')"
|
69 |
+
|
70 |
+
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-16k-0613")
|
71 |
+
|
72 |
+
textex_chain = create_extraction_chain(textex_schema, llm)
|
73 |
+
tablex_chain = create_extraction_chain(tablex_schema, llm)
|
74 |
+
|
75 |
+
st.set_page_config(page_title="NutriGenMe Paper Extractor")
|
76 |
+
st.title("NutriGenMe - Paper Extraction")
|
77 |
+
st.markdown("<div style='text-align: left; color: white; font-size: 16px'>In its latest version, the app is equipped to extract essential information from papers, including tables in both horizontal and vertical orientations, images, and text exclusively.</div><br>", unsafe_allow_html=True)
|
78 |
+
|
79 |
+
uploaded_files = st.file_uploader("Upload Paper(s) here :", type="pdf", accept_multiple_files=True)
|
80 |
+
|
81 |
+
if uploaded_files:
|
82 |
+
st.warning("""
|
83 |
+
Warning! Prior to proceeding, please take a moment to review the following : \n
|
84 |
+
Certain guidelines apply when utilizing this application, particularly if you intend to extract information from tables, whether they are oriented horizontally or vertically.
|
85 |
+
- If you intend to perform multiple PDF processes using Horizontal Table Extraction, ensure that all your PDF files adhere to a horizontal table format
|
86 |
+
- If you plan to undertake multiple PDF processes with Vertical Table Extraction, ensure that all your PDF files conform to a vertical table format
|
87 |
+
""", icon="⚠️")
|
88 |
+
|
89 |
+
col1, col2, col3 = st.columns(3)
|
90 |
+
|
91 |
+
if uploaded_files:
|
92 |
+
journals = []
|
93 |
+
strategy = "hi_res"
|
94 |
+
model_name = "yolox"
|
95 |
+
on_h, on_v, on_t = None, None, None
|
96 |
+
parseButtonH, parseButtonV, parseButtonT = None, None, None
|
97 |
+
# if uploaded_files:
|
98 |
+
with col1:
|
99 |
+
if on_v or on_t:
|
100 |
+
on_h = st.toggle("Horizontal Table Extraction", disabled=True)
|
101 |
+
else:
|
102 |
+
on_h = st.toggle("Horizontal Table Extraction")
|
103 |
+
if on_h:
|
104 |
+
chunk_size_h = st.selectbox(
|
105 |
+
'Tokens amounts per process :',
|
106 |
+
(16000, 12000, 10000, 8000, 5000), key='table_h'
|
107 |
+
)
|
108 |
+
parseButtonH = st.button("Get Result", key='table_H')
|
109 |
+
|
110 |
+
with col2:
|
111 |
+
if on_h or on_t:
|
112 |
+
on_v = st.toggle("Vertical Table Extraction", disabled=True)
|
113 |
+
else:
|
114 |
+
on_v = st.toggle("Vertical Table Extraction")
|
115 |
+
if on_v:
|
116 |
+
chunk_size_v = st.selectbox(
|
117 |
+
'Tokens amounts per process :',
|
118 |
+
(16000, 12000, 10000, 8000, 5000), key='table_v'
|
119 |
+
)
|
120 |
+
parseButtonV = st.button("Get Result", key='table_V')
|
121 |
+
with col3:
|
122 |
+
if on_h or on_v:
|
123 |
+
on_t = st.toggle("Text Extraction ", disabled=True)
|
124 |
+
else:
|
125 |
+
on_t = st.toggle("Text Extraction ")
|
126 |
+
if on_t:
|
127 |
+
chunk_size_t = st.selectbox(
|
128 |
+
'Tokens amounts per process :',
|
129 |
+
(16000, 12000, 10000, 8000, 5000), key='no_table'
|
130 |
+
)
|
131 |
+
parseButtonT = st.button("Get Result", key="no_Table")
|
132 |
+
|
133 |
+
if on_h:
|
134 |
+
if parseButtonH:
|
135 |
+
with st.status("Extraction in progress ...", expanded=True) as status:
|
136 |
+
st.write("Getting Result ...")
|
137 |
+
csv = pd.DataFrame()
|
138 |
+
for uploaded_file in stqdm(uploaded_files):
|
139 |
+
with NamedTemporaryFile(dir='.', suffix=".pdf") as pdf:
|
140 |
+
pdf.write(uploaded_file.getbuffer())
|
141 |
+
# st.write(pdf.name)
|
142 |
+
L = []
|
143 |
+
# Entity Extraction
|
144 |
+
st.write("☑ Extracting Entities ...")
|
145 |
+
bytes_data = uploaded_file.read()
|
146 |
+
journal = Journal(uploaded_file.name, bytes_data)
|
147 |
+
|
148 |
+
images = pdf2image.convert_from_bytes(journal.bytes)
|
149 |
+
extracted_text = ""
|
150 |
+
for image in images[:-1]:
|
151 |
+
text = pytesseract.image_to_string(image)
|
152 |
+
text = clean_text(text)
|
153 |
+
extracted_text += text + " "
|
154 |
+
text = replace_quotes(extracted_text)
|
155 |
+
text_chunk = split_text(text, chunk_size_h)
|
156 |
+
|
157 |
+
chunkdf = []
|
158 |
+
for i, chunk in enumerate(text_chunk):
|
159 |
+
inp = chunk
|
160 |
+
df = pd.DataFrame(literal_eval(str(json.dumps(tablex_chain.run(inp)[0])).replace("\'", "\"")), index=[0]).fillna('')
|
161 |
+
chunkdf.append(df)
|
162 |
+
|
163 |
+
concat = pd.concat(chunkdf, axis=0).reset_index().drop('index', axis=1).fillna('')
|
164 |
+
st.write("☑ Entities Extraction Done ..")
|
165 |
+
time.sleep(0.1)
|
166 |
+
st.write("☑ Generating Summary ...")
|
167 |
+
summary = get_summ(pdf.name)
|
168 |
+
st.write("☑ Generating Summary Done ..")
|
169 |
+
time.sleep(0.1)
|
170 |
+
st.write("☑ Table Extraction in progress ...")
|
171 |
+
# Table Extraction
|
172 |
+
# L = []
|
173 |
+
output_list = []
|
174 |
+
|
175 |
+
elements = partition_pdf(filename=pdf.name, strategy=strategy, infer_table_structure=True, model_name=model_name)
|
176 |
+
with NamedTemporaryFile(dir=".", suffix=".json") as f:
|
177 |
+
elements_to_json(elements, filename=f"{f.name.split('/')[-1]}")
|
178 |
+
json_file_path = os.path.abspath(f.name) # Get the absolute file path
|
179 |
+
with open(json_file_path, "r", encoding="utf-8") as jsonfile:
|
180 |
+
data = json.load(jsonfile)
|
181 |
+
extracted_elements = []
|
182 |
+
for entry in data:
|
183 |
+
if entry["type"] == "Table":
|
184 |
+
extracted_elements.append(entry["metadata"]["text_as_html"])
|
185 |
+
|
186 |
+
with NamedTemporaryFile(dir='.' , suffix='.txt') as txt_file:
|
187 |
+
text_file_path = os.path.abspath(txt_file.name)
|
188 |
+
with open(text_file_path, "w", encoding="utf-8") as txtfile:
|
189 |
+
for element in extracted_elements:
|
190 |
+
txtfile.write(element + "\n\n")
|
191 |
+
loader = TextLoader(text_file_path)
|
192 |
+
documents = loader.load()
|
193 |
+
# split it into chunks
|
194 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
195 |
+
docs = text_splitter.split_documents(documents)
|
196 |
+
embeddings = OpenAIEmbeddings()
|
197 |
+
|
198 |
+
db = Chroma.from_documents(docs, embeddings)
|
199 |
+
llm_table = ChatOpenAI(model_name="gpt-3.5-turbo-16k", temperature=0)
|
200 |
+
qa_chain = RetrievalQA.from_chain_type(llm_table, retriever=db.as_retriever())
|
201 |
+
|
202 |
+
# List of questions
|
203 |
+
questions = [
|
204 |
+
"""Mention all genes / locus name with respective rsID / SNP and potential diseases in a curly brackets like this:
|
205 |
+
Example 1 : {"Genes" : "FTO", "SNPs" : "rs9939609", "Diseases" : "Obesity"}
|
206 |
+
""",
|
207 |
+
"""Mention all genes / locus name with respective potential diseases in a curly brackets like this:
|
208 |
+
Example 2 : {"Genes" : "FTO", "SNPs" : "" (if not available), "Diseases" : "Obesity"}
|
209 |
+
""",
|
210 |
+
"""Mention all rsIDs / SNPs / Variant with respective potential diseases / traits in a curly brackets like this:
|
211 |
+
Example 3 : {"Genes" : "", "SNPs" : "rs9939609", "Diseases" : "Obesity"}
|
212 |
+
"""
|
213 |
+
]
|
214 |
+
try:
|
215 |
+
for query in questions:
|
216 |
+
response = qa_chain({"query" : query})
|
217 |
+
output_list.append(response)
|
218 |
+
except Exception as e:
|
219 |
+
pass
|
220 |
+
db.delete_collection()
|
221 |
+
|
222 |
+
# 1
|
223 |
+
for i in range(len(output_list[0]['result'].split('\n'))):
|
224 |
+
if output_list[0]['result'].split('\n')[i] != "":
|
225 |
+
try:
|
226 |
+
row = literal_eval(output_list[0]['result'].split('\n')[i])[0]
|
227 |
+
row = {**row, **{
|
228 |
+
'Title' : concat['title'][0],
|
229 |
+
'Authors' : concat['authors'][0],
|
230 |
+
'Publisher Name' : concat['publisher_name'][0],
|
231 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
232 |
+
# 'Population' : concat['population_race'][0],
|
233 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
234 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
235 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
236 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
237 |
+
'Recommendation' : summary,
|
238 |
+
# 'Sample Size' : concat['sample_size'][0]
|
239 |
+
}}
|
240 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
241 |
+
for g in row['Genes'].strip().split(','):
|
242 |
+
L.append({
|
243 |
+
'Title' : concat['title'][0],
|
244 |
+
'Authors' : concat['authors'][0],
|
245 |
+
'Publisher Name' : concat['publisher_name'][0],
|
246 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
247 |
+
# 'Population' : concat['population_race'][0],
|
248 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
249 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
250 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
251 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
252 |
+
'Recommendation' : summary,
|
253 |
+
# 'Sample Size' : concat['sample_size'][0],
|
254 |
+
'Genes' : g.strip().upper().replace('Unknown', ''),
|
255 |
+
'SNPs' : row['SNPs'].replace('Unknown', ''),
|
256 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', '').replace('Unknown', '')
|
257 |
+
})
|
258 |
+
else:
|
259 |
+
L.append(row)
|
260 |
+
|
261 |
+
except KeyError:
|
262 |
+
row = literal_eval(output_list[0]['result'].split('\n')[i])
|
263 |
+
row = {**row, **{
|
264 |
+
'Title' : concat['title'][0],
|
265 |
+
'Authors' : concat['authors'][0],
|
266 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
267 |
+
"Publisher Name" : concat['publisher_name'][0],
|
268 |
+
# 'Population' : concat['population_race'][0],
|
269 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
270 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
271 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
272 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
273 |
+
'Recommendation' : summary,
|
274 |
+
# 'Sample Size' : concat['sample_size'][0]
|
275 |
+
}
|
276 |
+
}
|
277 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
278 |
+
for g in row['Genes'].strip().split(','):
|
279 |
+
L.append({
|
280 |
+
'Title' : concat['title'][0],
|
281 |
+
'Authors' : concat['authors'][0],
|
282 |
+
'Publisher Name' : concat['publisher_name'][0],
|
283 |
+
'Publication Year' :get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
284 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
285 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
286 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
287 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
288 |
+
'Recommendation' : summary,
|
289 |
+
'Genes' : g.strip().upper().replace('Unknown', ''),
|
290 |
+
'SNPs' : row['SNPs'].replace('Unknown', ''),
|
291 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', '').replace('Unknown', '')
|
292 |
+
})
|
293 |
+
else:
|
294 |
+
L.append(row)
|
295 |
+
except SyntaxError:
|
296 |
+
row = literal_eval(output_list[0]['result'].split('\n')[i])
|
297 |
+
row = f"""{row}"""
|
298 |
+
row = {**row, **{
|
299 |
+
'Title' : concat['title'][0],
|
300 |
+
'Authors' : concat['authors'][0],
|
301 |
+
'Publisher Name' : concat['publisher_name'][0],
|
302 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
303 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
304 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
305 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
306 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
307 |
+
'Recommendation' : summary,
|
308 |
+
# 'Population' : concat['population_race'][0],
|
309 |
+
# 'Sample Size' : concat['sample_size'][0]
|
310 |
+
}
|
311 |
+
}
|
312 |
+
if not row['SNPs'].startswith("rs"):
|
313 |
+
row.update({
|
314 |
+
'SNPs' : "-"
|
315 |
+
})
|
316 |
+
else:
|
317 |
+
L.append(row)
|
318 |
+
except ValueError:
|
319 |
+
if type(output_list[0]['result'].split('\n')[i]) is dict:
|
320 |
+
row = output_list[0]['result'].split('\n')[i]
|
321 |
+
row = {**row, **{
|
322 |
+
'Title' : concat['title'][0],
|
323 |
+
'Authors' : concat['authors'][0],
|
324 |
+
'Publisher Name' : concat['publisher_name'][0],
|
325 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
326 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
327 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
328 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
329 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
330 |
+
'Recommendation' : summary,
|
331 |
+
}
|
332 |
+
}
|
333 |
+
if not row['SNPs'].startswith("rs"):
|
334 |
+
row.update({
|
335 |
+
'SNPs' : "-"
|
336 |
+
})
|
337 |
+
else:
|
338 |
+
L.append(row)
|
339 |
+
# 2
|
340 |
+
for i in range(len(output_list[1]['result'].split('\n'))):
|
341 |
+
if output_list[1]['result'].split('\n')[i] != "":
|
342 |
+
try:
|
343 |
+
row = literal_eval(output_list[1]['result'].split('\n')[i])[0]
|
344 |
+
row = {**row, **{
|
345 |
+
'Title' : concat['title'][0],
|
346 |
+
'Authors' : concat['authors'][0],
|
347 |
+
'Publisher Name' : concat['publisher_name'][0],
|
348 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
349 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
350 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
351 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
352 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
353 |
+
'Recommendation' : summary,
|
354 |
+
}
|
355 |
+
}
|
356 |
+
if row['SNPs'] != "Not available":
|
357 |
+
row.update({
|
358 |
+
'SNPs' : "Not available"
|
359 |
+
})
|
360 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
361 |
+
for g in row['Genes'].strip().split(','):
|
362 |
+
L.append({
|
363 |
+
'Title' : concat['title'][0],
|
364 |
+
'Authors' : concat['authors'][0],
|
365 |
+
'Publisher Name' : concat['publisher_name'][0],
|
366 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
367 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
368 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
369 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
370 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
371 |
+
'Recommendation' : summary,
|
372 |
+
'Genes' : g.strip().upper().replace('Unknown', ''),
|
373 |
+
"SNPs" : "Not available",
|
374 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', '').replace('Unknown', '')
|
375 |
+
})
|
376 |
+
else:
|
377 |
+
L.append(row)
|
378 |
+
except KeyError:
|
379 |
+
row = literal_eval(output_list[1]['result'].split('\n')[i])
|
380 |
+
row = {**row, **{
|
381 |
+
'Title' : concat['title'][0],
|
382 |
+
'Authors' : concat['authors'][0],
|
383 |
+
'Publisher Name' : concat['publisher_name'][0],
|
384 |
+
'Publication Year' :get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
385 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
386 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
387 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
388 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
389 |
+
'Recommendation' : summary,
|
390 |
+
}
|
391 |
+
}
|
392 |
+
if row['SNPs'] != "Not available":
|
393 |
+
row.update({
|
394 |
+
'SNPs' : "Not available"
|
395 |
+
})
|
396 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
397 |
+
for g in row['Genes'].strip().split(','):
|
398 |
+
L.append({
|
399 |
+
'Title' : concat['title'][0],
|
400 |
+
'Authors' : concat['authors'][0],
|
401 |
+
'Publisher Name' : concat['publisher_name'][0],
|
402 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
403 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
404 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
405 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
406 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
407 |
+
'Recommendation' : summary,
|
408 |
+
'Genes' : g.strip().upper().replace('Unknown', ''),
|
409 |
+
"SNPs" : "Not available",
|
410 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', '').replace('Unknown', '')
|
411 |
+
})
|
412 |
+
else:
|
413 |
+
L.append(row)
|
414 |
+
except SyntaxError:
|
415 |
+
row = f"""{row}"""
|
416 |
+
row = {**row, **{
|
417 |
+
'Title' : concat['title'][0],
|
418 |
+
'Authors' : concat['authors'][0],
|
419 |
+
'Publisher Name' : concat['publisher_name'][0],
|
420 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
421 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
422 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
423 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
424 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
425 |
+
'Recommendation' : summary,
|
426 |
+
}
|
427 |
+
}
|
428 |
+
if not row['SNPs'].startswith("rs"):
|
429 |
+
row.update({
|
430 |
+
'SNPs' : "-"
|
431 |
+
})
|
432 |
+
else:
|
433 |
+
L.append(row)
|
434 |
+
except ValueError:
|
435 |
+
if type(output_list[1]['result'].split('\n')[i]) is dict:
|
436 |
+
row = output_list[1]['result'].split('\n')[i]
|
437 |
+
row = {**row, **{
|
438 |
+
'Title' : concat['title'][0],
|
439 |
+
'Authors' : concat['authors'][0],
|
440 |
+
'Publisher Name' : concat['publisher_name'][0],
|
441 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
442 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
443 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
444 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
445 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
446 |
+
'Recommendation' : summary,
|
447 |
+
}
|
448 |
+
}
|
449 |
+
if not row['SNPs'].startswith("rs"):
|
450 |
+
row.update({
|
451 |
+
'SNPs' : "-"
|
452 |
+
})
|
453 |
+
else:
|
454 |
+
L.append(row)
|
455 |
+
# 3
|
456 |
+
for i in range(len(output_list[2]['result'].split('\n'))):
|
457 |
+
if output_list[2]['result'].split('\n')[i] != "":
|
458 |
+
try:
|
459 |
+
row = literal_eval(output_list[2]['result'].split('\n')[i])[0]
|
460 |
+
row = {**row, **{
|
461 |
+
'Title' : concat['title'][0],
|
462 |
+
'Authors' : concat['authors'][0],
|
463 |
+
'Publisher Name' : concat['publisher_name'][0],
|
464 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
465 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
466 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
467 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
468 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
469 |
+
'Recommendation' : summary,
|
470 |
+
}
|
471 |
+
}
|
472 |
+
if not row['SNPs'].startswith("rs"):
|
473 |
+
row.update({
|
474 |
+
'SNPs' : "-"
|
475 |
+
})
|
476 |
+
else:
|
477 |
+
L.append(row)
|
478 |
+
except KeyError:
|
479 |
+
row = literal_eval(output_list[2]['result'].split('\n')[i])
|
480 |
+
row = {**row, **{
|
481 |
+
'Title' : concat['title'][0],
|
482 |
+
'Authors' : concat['authors'][0],
|
483 |
+
'Publisher Name' : concat['publisher_name'][0],
|
484 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
485 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
486 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
487 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
488 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
489 |
+
'Recommendation' : summary,
|
490 |
+
}
|
491 |
+
}
|
492 |
+
if not row['SNPs'].startswith("rs"):
|
493 |
+
row.update({
|
494 |
+
'SNPs' : "-"
|
495 |
+
})
|
496 |
+
else:
|
497 |
+
L.append(row)
|
498 |
+
except SyntaxError:
|
499 |
+
row = f"""{row}"""
|
500 |
+
row = {**row, **{
|
501 |
+
'Title' : concat['title'][0],
|
502 |
+
'Authors' : concat['authors'][0],
|
503 |
+
'Publisher Name' : concat['publisher_name'][0],
|
504 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
505 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
506 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
507 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
508 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
509 |
+
'Recommendation' : summary,
|
510 |
+
}
|
511 |
+
}
|
512 |
+
if not row['SNPs'].startswith("rs"):
|
513 |
+
row.update({
|
514 |
+
'SNPs' : "-"
|
515 |
+
})
|
516 |
+
else:
|
517 |
+
L.append(row)
|
518 |
+
except ValueError:
|
519 |
+
if type(output_list[2]['result'].split('\n')[i]) is dict:
|
520 |
+
row = output_list[2]['result'].split('\n')[i]
|
521 |
+
row = {**row, **{
|
522 |
+
'Title' : concat['title'][0],
|
523 |
+
'Authors' : concat['authors'][0],
|
524 |
+
'Publisher Name' : concat['publisher_name'][0],
|
525 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
526 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
527 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
528 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
529 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
530 |
+
'Recommendation' : summary,
|
531 |
+
}
|
532 |
+
}
|
533 |
+
if not row['SNPs'].startswith("rs"):
|
534 |
+
row.update({
|
535 |
+
'SNPs' : "-"
|
536 |
+
})
|
537 |
+
else:
|
538 |
+
L.append(row)
|
539 |
+
|
540 |
+
st.write(output_list[2]['result'].split('\n'))
|
541 |
+
st.write("☑ Table Extraction Done ...")
|
542 |
+
status.update(label="Gene and SNPs succesfully collected.")
|
543 |
+
csv = pd.DataFrame(L).replace('', 'Not available')
|
544 |
+
csv = pd.DataFrame(L).replace('Unknown', '')
|
545 |
+
st.dataframe(csv)
|
546 |
+
|
547 |
+
generated_key = ''.join(random.choice(string.ascii_letters + string.digits) for i in range(16))
|
548 |
+
# if st.button("Download Excel File", key=generated_key):
|
549 |
+
# excel_link = create_excel_download_link(csv, uploaded_file.name.replace('.pdf', ''))
|
550 |
+
# st.markdown(excel_link, unsafe_allow_html=True)
|
551 |
+
with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer:
|
552 |
+
# Write each dataframe to a different worksheet
|
553 |
+
csv.to_excel(writer, sheet_name='Result')
|
554 |
+
writer.close()
|
555 |
+
|
556 |
+
# time_now = datetime.now()
|
557 |
+
# current_time = time_now.strftime("%H:%M:%S")
|
558 |
+
|
559 |
+
csv = convert_df(csv)
|
560 |
+
st.download_button(
|
561 |
+
label="Save Result",
|
562 |
+
data=buffer,
|
563 |
+
file_name=f'{uploaded_file.name}'.replace('.pdf', '') + '.xlsx',
|
564 |
+
mime='application/vnd.ms-excel',
|
565 |
+
key=generated_key
|
566 |
+
)
|
567 |
+
|
568 |
+
if on_v:
|
569 |
+
if parseButtonV:
|
570 |
+
with st.status("Extraction in progress ...", expanded=True) as status:
|
571 |
+
st.write("Getting Result ...")
|
572 |
+
csv = pd.DataFrame()
|
573 |
+
for uploaded_file in stqdm(uploaded_files):
|
574 |
+
L = []
|
575 |
+
with NamedTemporaryFile(dir='.', suffix=".pdf") as pdf:
|
576 |
+
pdf.write(uploaded_file.getbuffer())
|
577 |
+
# Open the PDF file in read-binary mode
|
578 |
+
with open(pdf.name, 'rb') as pdf_file:
|
579 |
+
# Create a PDF reader object
|
580 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
581 |
+
# Create a PDF writer object to write the rotated pages to a new PDF
|
582 |
+
pdf_writer = PyPDF2.PdfWriter()
|
583 |
+
# Iterate through each page in the original PDF
|
584 |
+
for page_num in range(len(pdf_reader.pages)):
|
585 |
+
# Get the page object
|
586 |
+
page = pdf_reader.pages[page_num]
|
587 |
+
# Rotate the page 90 degrees clockwise (use -90 for counterclockwise)
|
588 |
+
page.rotate(90)
|
589 |
+
# Add the rotated page to the PDF writer
|
590 |
+
pdf_writer.add_page(page)
|
591 |
+
|
592 |
+
with NamedTemporaryFile(dir='.', suffix=".pdf") as rotated_pdf:
|
593 |
+
pdf_writer.write(rotated_pdf.name)
|
594 |
+
# Entity Extraction
|
595 |
+
st.write("☑ Extracting Entities ...")
|
596 |
+
bytes_data = uploaded_file.read()
|
597 |
+
journal = Journal(uploaded_file.name, bytes_data)
|
598 |
+
|
599 |
+
images = pdf2image.convert_from_bytes(journal.bytes)
|
600 |
+
extracted_text = ""
|
601 |
+
for image in images[:-1]:
|
602 |
+
text = pytesseract.image_to_string(image)
|
603 |
+
text = clean_text(text)
|
604 |
+
extracted_text += text + " "
|
605 |
+
text = replace_quotes(extracted_text)
|
606 |
+
text_chunk = split_text(text, chunk_size_v)
|
607 |
+
|
608 |
+
chunkdf = []
|
609 |
+
for i, chunk in enumerate(text_chunk):
|
610 |
+
inp = chunk
|
611 |
+
df = pd.DataFrame(literal_eval(str(json.dumps(tablex_chain.run(inp)[0])).replace("\'", "\"")), index=[0]).fillna('')
|
612 |
+
chunkdf.append(df)
|
613 |
+
|
614 |
+
concat = pd.concat(chunkdf, axis=0).reset_index().drop('index', axis=1).fillna('')
|
615 |
+
st.write("☑ Entities Extraction Done ..")
|
616 |
+
time.sleep(0.1)
|
617 |
+
st.write("☑ Generating Summary ...")
|
618 |
+
summary = get_summ(pdf.name)
|
619 |
+
st.write("☑ Generating Summary Done ..")
|
620 |
+
time.sleep(0.1)
|
621 |
+
st.write("☑ Table Extraction in progress ...")
|
622 |
+
|
623 |
+
# Table Extraction
|
624 |
+
output_list = []
|
625 |
+
|
626 |
+
elements = partition_pdf(filename=rotated_pdf.name, strategy=strategy, infer_table_structure=True, model_name=model_name)
|
627 |
+
with NamedTemporaryFile(dir=".", suffix=".json") as f:
|
628 |
+
elements_to_json(elements, filename=f"{f.name.split('/')[-1]}")
|
629 |
+
json_file_path = os.path.abspath(f.name) # Get the absolute file path
|
630 |
+
with open(json_file_path, "r", encoding="utf-8") as jsonfile:
|
631 |
+
data = json.load(jsonfile)
|
632 |
+
extracted_elements = []
|
633 |
+
for entry in data:
|
634 |
+
if entry["type"] == "Table":
|
635 |
+
extracted_elements.append(entry["metadata"]["text_as_html"])
|
636 |
+
|
637 |
+
with NamedTemporaryFile(dir='.' , suffix='.txt') as txt_file:
|
638 |
+
text_file_path = os.path.abspath(txt_file.name)
|
639 |
+
with open(text_file_path, "w", encoding="utf-8") as txtfile:
|
640 |
+
for element in extracted_elements:
|
641 |
+
txtfile.write(element + "\n\n")
|
642 |
+
loader = TextLoader(text_file_path)
|
643 |
+
documents = loader.load()
|
644 |
+
# split it into chunks
|
645 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
646 |
+
docs = text_splitter.split_documents(documents)
|
647 |
+
embeddings = OpenAIEmbeddings()
|
648 |
+
|
649 |
+
db = Chroma.from_documents(docs, embeddings)
|
650 |
+
llm_table = ChatOpenAI(model_name="gpt-3.5-turbo-16k", temperature=0)
|
651 |
+
qa_chain = RetrievalQA.from_chain_type(llm_table, retriever=db.as_retriever())
|
652 |
+
|
653 |
+
# List of questions
|
654 |
+
questions = [
|
655 |
+
"""Mention all genes / locus name with respective rsID / SNP and potential diseases in a curly brackets like this:
|
656 |
+
Example 1 : {"Genes" : "FTO", "SNPs" : "rs9939609", "Diseases" : "Obesity"}
|
657 |
+
""",
|
658 |
+
"""Mention all genes / locus name with respective potential diseases in a curly brackets like this:
|
659 |
+
Example 2 : {"Genes" : "FTO", "SNPs" : "" (if not available), "Diseases" : "Obesitya"}
|
660 |
+
""",
|
661 |
+
"""Mention all rsIDs / SNPs / Variant with respective potential diseases / traits in a curly brackets like this:
|
662 |
+
Example 3 : {"Genes" : "", "SNPs" : "rs9939609", "Diseases" : "Obesity"}
|
663 |
+
"""
|
664 |
+
]
|
665 |
+
try:
|
666 |
+
for query in questions:
|
667 |
+
response = qa_chain({"query" : query})
|
668 |
+
output_list.append(response)
|
669 |
+
except Exception as e:
|
670 |
+
pass
|
671 |
+
db.delete_collection()
|
672 |
+
# 1
|
673 |
+
for i in range(len(output_list[0]['result'].split('\n'))):
|
674 |
+
if output_list[0]['result'].split('\n')[i] != "":
|
675 |
+
try:
|
676 |
+
row = literal_eval(output_list[0]['result'].split('\n')[i])[0]
|
677 |
+
row = {**row, **{
|
678 |
+
'Title' : concat['title'][0],
|
679 |
+
'Authors' : concat['authors'][0],
|
680 |
+
'Publisher Name' : concat['publisher_name'][0],
|
681 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
682 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
683 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
684 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
685 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
686 |
+
'Recommendation' : summary,
|
687 |
+
}}
|
688 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
689 |
+
for g in row['Genes'].strip().split(','):
|
690 |
+
L.append({
|
691 |
+
'Genes' : g.strip().upper(),
|
692 |
+
'SNPs' : row['SNPs'],
|
693 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', ''),
|
694 |
+
'Title' : concat['title'][0],
|
695 |
+
'Authors' : concat['authors'][0],
|
696 |
+
'Publisher Name' : concat['publisher_name'][0],
|
697 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
698 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
699 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
700 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
701 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
702 |
+
'Recommendation' : summary,
|
703 |
+
})
|
704 |
+
else:
|
705 |
+
L.append(row)
|
706 |
+
except KeyError:
|
707 |
+
row = literal_eval(output_list[0]['result'].split('\n')[i])
|
708 |
+
row = {**row, **{
|
709 |
+
'Title' : concat['title'][0],
|
710 |
+
'Authors' : concat['authors'][0],
|
711 |
+
'Publisher Name' : concat['publisher_name'][0],
|
712 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
713 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
714 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
715 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
716 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
717 |
+
'Recommendation' : summary,
|
718 |
+
}}
|
719 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
720 |
+
for g in row['Genes'].strip().split(','):
|
721 |
+
L.append({
|
722 |
+
'Genes' : g.strip().upper(),
|
723 |
+
'SNPs' : row['SNPs'],
|
724 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', ''),
|
725 |
+
'Title' : concat['title'][0],
|
726 |
+
'Authors' : concat['authors'][0],
|
727 |
+
'Publisher Name' : concat['publisher_name'][0],
|
728 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
729 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
730 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
731 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
732 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
733 |
+
'Recommendation' : summary,
|
734 |
+
})
|
735 |
+
else:
|
736 |
+
L.append(row)
|
737 |
+
except ValueError:
|
738 |
+
if type(output_list[0]['result'].split('\n')[i]) is dict:
|
739 |
+
row = output_list[0]['result'].split('\n')[i]
|
740 |
+
row = {**row, **{
|
741 |
+
'Title' : concat['title'][0],
|
742 |
+
'Authors' : concat['authors'][0],
|
743 |
+
'Publisher Name' : concat['publisher_name'][0],
|
744 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
745 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
746 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
747 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
748 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
749 |
+
'Recommendation' : summary,
|
750 |
+
}
|
751 |
+
}
|
752 |
+
if not row['SNPs'].startswith("rs"):
|
753 |
+
row.update({
|
754 |
+
'SNPs' : "-"
|
755 |
+
})
|
756 |
+
else:
|
757 |
+
L.append(row)
|
758 |
+
except SyntaxError:
|
759 |
+
row = literal_eval("""{}""".format(output_list[2]['result'].split('\n')[i]))
|
760 |
+
row = {**row, **{
|
761 |
+
'Title' : concat['title'][0],
|
762 |
+
'Authors' : concat['authors'][0],
|
763 |
+
'Publisher Name' : concat['publisher_name'][0],
|
764 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
765 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
766 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
767 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
768 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
769 |
+
'Recommendation' : summary,
|
770 |
+
}
|
771 |
+
}
|
772 |
+
if not row['SNPs'].startswith("rs"):
|
773 |
+
row.update({
|
774 |
+
'SNPs' : "-"
|
775 |
+
})
|
776 |
+
else:
|
777 |
+
L.append(row)
|
778 |
+
# 2
|
779 |
+
for i in range(len(output_list[1]['result'].split('\n'))):
|
780 |
+
if output_list[1]['result'].split('\n')[i] != "":
|
781 |
+
try:
|
782 |
+
row = literal_eval(output_list[1]['result'].split('\n')[i])[0]
|
783 |
+
row = {**row, **{
|
784 |
+
'Title' : concat['title'][0],
|
785 |
+
'Authors' : concat['authors'][0],
|
786 |
+
'Publisher Name' : concat['publisher_name'][0],
|
787 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
788 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
789 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
790 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
791 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
792 |
+
'Recommendation' : summary,
|
793 |
+
}}
|
794 |
+
if row['SNPs'] != "Not available":
|
795 |
+
row.update({
|
796 |
+
'SNPs' : "Not available"
|
797 |
+
})
|
798 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
799 |
+
for g in row['Genes'].strip().split(','):
|
800 |
+
L.append({
|
801 |
+
'Genes' : g.strip().upper(),
|
802 |
+
"SNPs" : "Not available",
|
803 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', ''),
|
804 |
+
'Title' : concat['title'][0],
|
805 |
+
'Authors' : concat['authors'][0],
|
806 |
+
'Publisher Name' : concat['publisher_name'][0],
|
807 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
808 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
809 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
810 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
811 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
812 |
+
'Recommendation' : summary,
|
813 |
+
})
|
814 |
+
else:
|
815 |
+
L.append(row)
|
816 |
+
except KeyError:
|
817 |
+
row = literal_eval(output_list[1]['result'].split('\n')[i])
|
818 |
+
row = {**row, **{
|
819 |
+
'Title' : concat['title'][0],
|
820 |
+
'Authors' : concat['authors'][0],
|
821 |
+
'Publisher Name' : concat['publisher_name'][0],
|
822 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
823 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
824 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
825 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
826 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
827 |
+
'Recommendation' : summary,
|
828 |
+
}}
|
829 |
+
if row['SNPs'] != "Not available":
|
830 |
+
row.update({
|
831 |
+
'SNPs' : "Not available"
|
832 |
+
})
|
833 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
834 |
+
for g in row['Genes'].strip().split(','):
|
835 |
+
L.append({
|
836 |
+
'Genes' : g.strip().upper(),
|
837 |
+
"SNPs" : "Not available",
|
838 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', ''),
|
839 |
+
'Title' : concat['title'][0],
|
840 |
+
'Authors' : concat['authors'][0],
|
841 |
+
'Publisher Name' : concat['publisher_name'][0],
|
842 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
843 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
844 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
845 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
846 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
847 |
+
'Recommendation' : summary,
|
848 |
+
})
|
849 |
+
else:
|
850 |
+
L.append(row)
|
851 |
+
except ValueError:
|
852 |
+
if type(output_list[1]['result'].split('\n')[i]) is dict:
|
853 |
+
row = output_list[1]['result'].split('\n')[i]
|
854 |
+
row = {**row, **{
|
855 |
+
'Title' : concat['title'][0],
|
856 |
+
'Authors' : concat['authors'][0],
|
857 |
+
'Publisher Name' : concat['publisher_name'][0],
|
858 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
859 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
860 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
861 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
862 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
863 |
+
'Recommendation' : summary,
|
864 |
+
}
|
865 |
+
}
|
866 |
+
if not row['SNPs'].startswith("rs"):
|
867 |
+
row.update({
|
868 |
+
'SNPs' : "-"
|
869 |
+
})
|
870 |
+
else:
|
871 |
+
L.append(row)
|
872 |
+
except SyntaxError:
|
873 |
+
row = literal_eval("""{}""".format(output_list[2]['result'].split('\n')[i]))
|
874 |
+
row = {**row, **{
|
875 |
+
'Title' : concat['title'][0],
|
876 |
+
'Authors' : concat['authors'][0],
|
877 |
+
'Publisher Name' : concat['publisher_name'][0],
|
878 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
879 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
880 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
881 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
882 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
883 |
+
'Recommendation' : summary,
|
884 |
+
}
|
885 |
+
}
|
886 |
+
if not row['SNPs'].startswith("rs"):
|
887 |
+
row.update({
|
888 |
+
'SNPs' : "-"
|
889 |
+
})
|
890 |
+
else:
|
891 |
+
L.append(row)
|
892 |
+
# 3
|
893 |
+
for i in range(len(output_list[2]['result'].split('\n'))):
|
894 |
+
if output_list[2]['result'].split('\n')[i] != "":
|
895 |
+
try:
|
896 |
+
row = literal_eval(output_list[2]['result'].split('\n')[i])[0]
|
897 |
+
row = {**row, **{
|
898 |
+
'Title' : concat['title'][0],
|
899 |
+
'Authors' : concat['authors'][0],
|
900 |
+
'Publisher Name' : concat['publisher_name'][0],
|
901 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
902 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
903 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
904 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
905 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
906 |
+
'Recommendation' : summary,
|
907 |
+
}
|
908 |
+
}
|
909 |
+
if not row['SNPs'].startswith("rs"):
|
910 |
+
row.update({
|
911 |
+
'SNPs' : "-"
|
912 |
+
})
|
913 |
+
else:
|
914 |
+
L.append(row)
|
915 |
+
except KeyError:
|
916 |
+
row = literal_eval(output_list[2]['result'].split('\n')[i])
|
917 |
+
row = {**row, **{
|
918 |
+
'Title' : concat['title'][0],
|
919 |
+
'Authors' : concat['authors'][0],
|
920 |
+
'Publisher Name' : concat['publisher_name'][0],
|
921 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
922 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
923 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
924 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
925 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
926 |
+
'Recommendation' : summary,
|
927 |
+
}
|
928 |
+
}
|
929 |
+
if not row['SNPs'].startswith("rs"):
|
930 |
+
row.update({
|
931 |
+
'SNPs' : "-"
|
932 |
+
})
|
933 |
+
else:
|
934 |
+
L.append(row)
|
935 |
+
except ValueError:
|
936 |
+
if type(output_list[2]['result'].split('\n')[i]) is dict:
|
937 |
+
row = output_list[2]['result'].split('\n')[i]
|
938 |
+
row = {**row, **{
|
939 |
+
'Title' : concat['title'][0],
|
940 |
+
'Authors' : concat['authors'][0],
|
941 |
+
'Publisher Name' : concat['publisher_name'][0],
|
942 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
943 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
944 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
945 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
946 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
947 |
+
'Recommendation' : summary,
|
948 |
+
}
|
949 |
+
}
|
950 |
+
if not row['SNPs'].startswith("rs"):
|
951 |
+
row.update({
|
952 |
+
'SNPs' : "-"
|
953 |
+
})
|
954 |
+
else:
|
955 |
+
L.append(row)
|
956 |
+
except SyntaxError:
|
957 |
+
row = literal_eval("""{}""".format(output_list[2]['result'].split('\n')[i]))
|
958 |
+
row = {**row, **{
|
959 |
+
'Title' : concat['title'][0],
|
960 |
+
'Authors' : concat['authors'][0],
|
961 |
+
'Publisher Name' : concat['publisher_name'][0],
|
962 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
963 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
964 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
965 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
966 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
967 |
+
'Recommendation' : summary,
|
968 |
+
}
|
969 |
+
}
|
970 |
+
if not row['SNPs'].startswith("rs"):
|
971 |
+
row.update({
|
972 |
+
'SNPs' : "-"
|
973 |
+
})
|
974 |
+
else:
|
975 |
+
L.append(row)
|
976 |
+
st.write("☑ Table Extraction Done")
|
977 |
+
status.update(label="Gene and SNPs succesfully collected.")
|
978 |
+
csv = pd.DataFrame(L).replace('', 'Not available')
|
979 |
+
csv = pd.DataFrame(L).replace('Unknown', '')
|
980 |
+
st.dataframe(csv)
|
981 |
+
|
982 |
+
with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer:
|
983 |
+
# Write each dataframe to a different worksheet
|
984 |
+
csv.to_excel(writer, sheet_name='Result')
|
985 |
+
writer.close()
|
986 |
+
|
987 |
+
time_now = datetime.now()
|
988 |
+
current_time = time_now.strftime("%H:%M:%S")
|
989 |
+
|
990 |
+
csv = convert_df(csv)
|
991 |
+
st.download_button(
|
992 |
+
label="Save Result",
|
993 |
+
data=buffer,
|
994 |
+
file_name=f'{uploaded_file.name}'.replace('.pdf', '') + '.xlsx',
|
995 |
+
mime='application/vnd.ms-excel'
|
996 |
+
)
|
997 |
+
|
998 |
+
if on_t:
|
999 |
+
if parseButtonT:
|
1000 |
+
with st.status("Extraction in progress ...", expanded=True) as status:
|
1001 |
+
st.write("Getting Result ...")
|
1002 |
+
csv = pd.DataFrame()
|
1003 |
+
for uploaded_file in stqdm(uploaded_files):
|
1004 |
+
L = []
|
1005 |
+
with NamedTemporaryFile(dir='.', suffix=".pdf") as pdf:
|
1006 |
+
pdf.write(uploaded_file.getbuffer())
|
1007 |
+
|
1008 |
+
# Entity Extraction
|
1009 |
+
st.write("☑ Extracting Entities ...")
|
1010 |
+
bytes_data = uploaded_file.read()
|
1011 |
+
journal = Journal(uploaded_file.name, bytes_data)
|
1012 |
+
|
1013 |
+
images = pdf2image.convert_from_bytes(journal.bytes)
|
1014 |
+
extracted_text = ""
|
1015 |
+
for image in images[:-1]:
|
1016 |
+
text = pytesseract.image_to_string(image)
|
1017 |
+
text = clean_text(text)
|
1018 |
+
extracted_text += text + " "
|
1019 |
+
text = replace_quotes(extracted_text)
|
1020 |
+
text_chunk = split_text(text, chunk_size_t)
|
1021 |
+
|
1022 |
+
chunkdf = []
|
1023 |
+
for i, chunk in enumerate(text_chunk):
|
1024 |
+
inp = chunk
|
1025 |
+
df = pd.DataFrame(literal_eval(str(json.dumps(textex_chain.run(inp)[0])).replace("\'", "\"")), index=[0]).fillna('')
|
1026 |
+
chunkdf.append(df)
|
1027 |
+
|
1028 |
+
concat = pd.concat(chunkdf, axis=0).reset_index().drop('index', axis=1).fillna('')
|
1029 |
+
st.write("☑ Entities Extraction Done ..")
|
1030 |
+
time.sleep(0.1)
|
1031 |
+
st.write("☑ Generating Summary ...")
|
1032 |
+
|
1033 |
+
concat['SNPs'] = concat['SNPs'].apply(lambda x: x if x.startswith('rs') else '')
|
1034 |
+
for col in list(concat.columns):
|
1035 |
+
concat[col] = concat[col].apply(lambda x: x if x not in ['N/A', 'not mentioned', 'Not mentioned', 'Unknown'] else '')
|
1036 |
+
|
1037 |
+
summary = get_summ(pdf.name)
|
1038 |
+
time.sleep(0.1)
|
1039 |
+
st.write("☑ Generating Summary Done...")
|
1040 |
+
for i in range(len(concat)):
|
1041 |
+
if (len(concat['genes_locus'][i].split(',')) >= 1) and concat['SNPs'][i] == '':
|
1042 |
+
for g in concat['genes_locus'][i].split(','):
|
1043 |
+
L.append({
|
1044 |
+
'Title' : concat['title'][0],
|
1045 |
+
'Author' : concat['authors'][0],
|
1046 |
+
'Publisher Name' : concat['publisher'][0],
|
1047 |
+
'Publication Year' : get_valid_year(' '.join(concat['publication_year'].values.tolist())),
|
1048 |
+
'Genes' : g.upper(),
|
1049 |
+
'Population' : upper_abbreviation(' '.join(np.unique(concat['population_race'].values.tolist())).title()),
|
1050 |
+
'Diseases' : upper_abbreviation(' '.join(concat['diseases'].values.tolist()).title()),
|
1051 |
+
'Sample Size' : sample_size_postproc(upper_abbreviation(' '.join(concat['sample_size'].values.tolist()).title())),
|
1052 |
+
'SNPs' : concat['SNPs'][i],
|
1053 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).title()),
|
1054 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).title()),
|
1055 |
+
'Recommendation' : summary,
|
1056 |
+
})
|
1057 |
+
elif (len(concat['SNPs'][i].split(',')) >= 1):
|
1058 |
+
for s in concat['SNPs'][i].split(','):
|
1059 |
+
try:
|
1060 |
+
L.append({
|
1061 |
+
'Title' : concat['title'][0],
|
1062 |
+
'Author' : concat['authors'][0],
|
1063 |
+
'Publisher Name' : concat['publisher'][0],
|
1064 |
+
'Publication Year' : get_valid_year(' '.join(concat['publication_year'].values.tolist())),
|
1065 |
+
'Genes' : get_geneName(s.strip()).upper(),
|
1066 |
+
'Population' : upper_abbreviation(' '.join(np.unique(concat['population_race'].values.tolist())).title()),
|
1067 |
+
'Diseases' : upper_abbreviation(' '.join(concat['diseases'].values.tolist()).title()),
|
1068 |
+
'Sample Size' : sample_size_postproc(upper_abbreviation(' '.join(concat['sample_size'].values.tolist()).title())),
|
1069 |
+
'SNPs' : s,
|
1070 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).title()),
|
1071 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).title()),
|
1072 |
+
'Recommendation' : summary,
|
1073 |
+
})
|
1074 |
+
except Exception as e:
|
1075 |
+
L.append({
|
1076 |
+
'Title' : concat['title'][0],
|
1077 |
+
'Author' : concat['authors'][0],
|
1078 |
+
'Publisher Name' : concat['publisher'][0],
|
1079 |
+
'Publication Year' : get_valid_year(' '.join(concat['publication_year'].values.tolist())),
|
1080 |
+
'Genes' : '',
|
1081 |
+
'Population' : upper_abbreviation(' '.join(np.unique(concat['population_race'].values.tolist())).title()),
|
1082 |
+
'Diseases' : upper_abbreviation(' '.join(concat['diseases'].values.tolist()).title()),
|
1083 |
+
'Sample Size' : sample_size_postproc(upper_abbreviation(' '.join(concat['sample_size'].values.tolist()).title())),
|
1084 |
+
'SNPs' : s,
|
1085 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).title()),
|
1086 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).title()),
|
1087 |
+
'Recommendation' : summary,
|
1088 |
+
})
|
1089 |
+
|
1090 |
+
csv = pd.concat([csv, pd.DataFrame(L)], ignore_index=True)
|
1091 |
+
status.update(label="Gene and SNPs succesfully collected.")
|
1092 |
+
st.dataframe(csv)
|
1093 |
+
with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer:
|
1094 |
+
# Write each dataframe to a different worksheet
|
1095 |
+
csv.to_excel(writer, sheet_name='Result')
|
1096 |
+
writer.close()
|
1097 |
+
|
1098 |
+
time_now = datetime.now()
|
1099 |
+
current_time = time_now.strftime("%H:%M:%S")
|
1100 |
+
|
1101 |
+
csv = convert_df(csv)
|
1102 |
+
st.download_button(
|
1103 |
+
label="Save Result",
|
1104 |
+
data=buffer,
|
1105 |
+
file_name=f'{uploaded_file.name}'.replace('.pdf', '') + '.xlsx',
|
1106 |
+
mime='application/vnd.ms-excel'
|
1107 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pikepdf
|
2 |
+
stqdm
|
3 |
+
pdf2image
|
4 |
+
PyPDF2
|
5 |
+
pytesseract
|
6 |
+
unstructured
|
7 |
+
chromadb==0.3.29
|
8 |
+
nltk
|
9 |
+
pandas
|
10 |
+
streamlit
|
11 |
+
xlsxwriter
|
12 |
+
openai
|
13 |
+
biopython
|
14 |
+
langchain
|
15 |
+
unstructured-pytesseract
|
16 |
+
unstructured-inference
|
schema.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
textex_schema = {
|
2 |
+
"properties" : {
|
3 |
+
"title" : {
|
4 |
+
"type" : "string",
|
5 |
+
"description" : "Title of the given text. Often located in the top of the first page."
|
6 |
+
},
|
7 |
+
"authors" : {
|
8 |
+
"type" : "string",
|
9 |
+
"description" : "Authors / writers of the given text. Some of the names of the people."
|
10 |
+
},
|
11 |
+
"publisher" : {
|
12 |
+
"type" : "string",
|
13 |
+
"description" : "Publisher name of the given text."
|
14 |
+
},
|
15 |
+
"publication_year" : {
|
16 |
+
"type" : "string",
|
17 |
+
"description" : "The year when the given text publised."
|
18 |
+
},
|
19 |
+
"genes_locus" : {
|
20 |
+
"type" : "string",
|
21 |
+
"description" : "The gene or locus names mentioned in the text."
|
22 |
+
},
|
23 |
+
"diseases" : {
|
24 |
+
"type" : "string",
|
25 |
+
"description" : "Diseases / Phenotypes / Traits corresponding to the Gene / Locus / SNP mentioned in the text."
|
26 |
+
},
|
27 |
+
"SNPs" : {
|
28 |
+
"type" : "string",
|
29 |
+
"description" : "SNPs (Single Nucleotide Polymorphism) / rsID mentioned in the text. Usually startwith `rs` followed by some numbers."
|
30 |
+
},
|
31 |
+
"population_race" : {
|
32 |
+
"type" : "string",
|
33 |
+
"description" : "Population / race used by the author in the given text."
|
34 |
+
},
|
35 |
+
"sample_size" : {
|
36 |
+
"type" : "string",
|
37 |
+
"description" : "Sample size of the population used in the research that mentioned in the paper."
|
38 |
+
},
|
39 |
+
"study_methodology" : {
|
40 |
+
"type" : "string",
|
41 |
+
"description" : "Study methodoly mentioned in the text."
|
42 |
+
},
|
43 |
+
"study_level" : {
|
44 |
+
"type" : "string",
|
45 |
+
"description" : "Study level mentioned in the text."
|
46 |
+
}
|
47 |
+
},
|
48 |
+
"required" : ["title"]
|
49 |
+
}
|
50 |
+
|
51 |
+
tablex_schema = {
|
52 |
+
"properties" : {
|
53 |
+
"title" : {
|
54 |
+
"type" : "string",
|
55 |
+
"description" : "Title of the given text. Often located in the top of the first page. Usually at the top of authors name."
|
56 |
+
},
|
57 |
+
"authors" : {
|
58 |
+
"type" : "string",
|
59 |
+
"description" : "Authors / writers of the given text. Some of the names of the people."
|
60 |
+
},
|
61 |
+
"publisher_name" : {
|
62 |
+
"type" : "string",
|
63 |
+
"description" : "Publisher name of the given text."
|
64 |
+
},
|
65 |
+
"year_of_publication" : {
|
66 |
+
"type" : "string",
|
67 |
+
"description" : "The year when the given text publised."
|
68 |
+
},
|
69 |
+
"population_race" : {
|
70 |
+
"type" : "string",
|
71 |
+
"description" : "Population / race used by the author in the given text."
|
72 |
+
},
|
73 |
+
"sample_size" : {
|
74 |
+
"type" : "string",
|
75 |
+
"description" : "Sample size of the population used in the research that mentioned in the paper."
|
76 |
+
},
|
77 |
+
"study_methodology" : {
|
78 |
+
"type" : "string",
|
79 |
+
"description" : "Study methodoly mentioned in the text."
|
80 |
+
},
|
81 |
+
"study_level" : {
|
82 |
+
"type" : "string",
|
83 |
+
"description" : "Study level mentioned in the text."
|
84 |
+
}
|
85 |
+
},
|
86 |
+
"required" : ["title"]
|
87 |
+
}
|
summ.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from langchain.chains.llm import LLMChain
|
3 |
+
from langchain.chat_models import ChatOpenAI
|
4 |
+
from langchain.prompts import PromptTemplate
|
5 |
+
from langchain.document_loaders import PDFPlumberLoader
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
from langchain.chains import ReduceDocumentsChain, MapReduceDocumentsChain
|
8 |
+
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
9 |
+
|
10 |
+
os.environ['OPENAI_API_KEY'] = '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'
|
11 |
+
|
12 |
+
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-16k")
|
13 |
+
|
14 |
+
def get_summ(path):
|
15 |
+
|
16 |
+
loader = PDFPlumberLoader(path)
|
17 |
+
docs = loader.load()
|
18 |
+
# Map
|
19 |
+
map_template = """The following is a set of documents
|
20 |
+
{docs}
|
21 |
+
Based on this list of docs, please identify the main themes
|
22 |
+
Helpful Answer:"""
|
23 |
+
map_prompt = PromptTemplate.from_template(map_template)
|
24 |
+
map_chain = LLMChain(llm=llm, prompt=map_prompt)
|
25 |
+
|
26 |
+
# Reduce
|
27 |
+
reduce_template = """The following is set of summaries:
|
28 |
+
{doc_summaries}
|
29 |
+
Take these and distill it into a final, consolidated summary of the main themes.
|
30 |
+
Helpful Answer:"""
|
31 |
+
reduce_prompt = PromptTemplate.from_template(reduce_template)
|
32 |
+
|
33 |
+
# Run chain
|
34 |
+
reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt)
|
35 |
+
|
36 |
+
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
|
37 |
+
combine_documents_chain = StuffDocumentsChain(
|
38 |
+
llm_chain=reduce_chain, document_variable_name="doc_summaries"
|
39 |
+
)
|
40 |
+
|
41 |
+
# Combines and iteravely reduces the mapped documents
|
42 |
+
reduce_documents_chain = ReduceDocumentsChain(
|
43 |
+
# This is final chain that is called.
|
44 |
+
combine_documents_chain=combine_documents_chain,
|
45 |
+
# If documents exceed context for `StuffDocumentsChain`
|
46 |
+
collapse_documents_chain=combine_documents_chain,
|
47 |
+
# The maximum number of tokens to group documents into.
|
48 |
+
token_max=12000,
|
49 |
+
)
|
50 |
+
|
51 |
+
# Combining documents by mapping a chain over them, then combining results
|
52 |
+
map_reduce_chain = MapReduceDocumentsChain(
|
53 |
+
# Map chain
|
54 |
+
llm_chain=map_chain,
|
55 |
+
# Reduce chain
|
56 |
+
reduce_documents_chain=reduce_documents_chain,
|
57 |
+
# The variable name in the llm_chain to put the documents in
|
58 |
+
document_variable_name="docs",
|
59 |
+
# Return the results of the map steps in the output
|
60 |
+
return_intermediate_steps=False,
|
61 |
+
)
|
62 |
+
|
63 |
+
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
|
64 |
+
chunk_size=12000, chunk_overlap=0
|
65 |
+
)
|
66 |
+
split_docs = text_splitter.split_documents(docs)
|
67 |
+
|
68 |
+
return map_reduce_chain.run(split_docs)
|
utils.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import textwrap
|
4 |
+
|
5 |
+
import nltk
|
6 |
+
import re
|
7 |
+
from Bio import Entrez
|
8 |
+
|
9 |
+
|
10 |
+
def replace_quotes(text):
|
11 |
+
pattern = r'(?<=")[^"]*(?=")'
|
12 |
+
return re.sub(pattern, lambda match: match.group(0).replace('"', "'"), text)
|
13 |
+
|
14 |
+
|
15 |
+
def clean_text(text):
|
16 |
+
"""Remove section titles and figure descriptions from text"""
|
17 |
+
pattern = r'[^\w\s]'
|
18 |
+
clean = "\n".join([row for row in text.split("\n") if (len(row.split(" "))) > 3 and not (row.startswith("(a)")) and not row.startswith("Figure")])
|
19 |
+
return re.sub(pattern, '', clean)
|
20 |
+
|
21 |
+
|
22 |
+
def truncate_text(text, max_tokens):
|
23 |
+
wrapper = textwrap.TextWrapper(width=max_tokens)
|
24 |
+
truncated_text = wrapper.wrap(text)
|
25 |
+
if len(truncated_text) > 0:
|
26 |
+
return truncated_text[0]
|
27 |
+
else:
|
28 |
+
return ""
|
29 |
+
|
30 |
+
|
31 |
+
def split_text(text, chunk_size):
|
32 |
+
chunks = []
|
33 |
+
start = 0
|
34 |
+
end = chunk_size
|
35 |
+
while start < len(text):
|
36 |
+
chunks.append(text[start:end])
|
37 |
+
start = end
|
38 |
+
end += chunk_size
|
39 |
+
return chunks
|
40 |
+
|
41 |
+
|
42 |
+
def extract_gene_name(text):
|
43 |
+
|
44 |
+
text_str = text.decode("utf-8")
|
45 |
+
text_str = text_str.replace("\\n", "").replace("\\t", "").replace("\\'", "'")
|
46 |
+
pattern = r"<NAME>(.*?)</NAME>"
|
47 |
+
match = re.search(pattern, text_str)
|
48 |
+
if match:
|
49 |
+
gene_name = match.group(1)
|
50 |
+
return gene_name
|
51 |
+
else:
|
52 |
+
return None
|
53 |
+
|
54 |
+
|
55 |
+
def get_geneName(rsid):
|
56 |
+
|
57 |
+
text = Entrez.efetch(db="snp", id=rsid, retmode='xml').read()
|
58 |
+
text = extract_gene_name(text)
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
def split_text_into_sentences(text, num_sentences):
|
63 |
+
|
64 |
+
sentences = nltk.sent_tokenize(text)
|
65 |
+
grouped_sentences = [sentences[i:i+num_sentences] for i in range(0, len(sentences), num_sentences)]
|
66 |
+
return grouped_sentences
|
67 |
+
|
68 |
+
|
69 |
+
def flatten_list(nested_list):
|
70 |
+
|
71 |
+
flattened_list = []
|
72 |
+
for item in nested_list:
|
73 |
+
if isinstance(item, list):
|
74 |
+
flattened_list.extend(flatten_list(item))
|
75 |
+
else:
|
76 |
+
flattened_list.append(item)
|
77 |
+
return flattened_list
|
78 |
+
|
79 |
+
|
80 |
+
def move_file(source_path, destination_path):
|
81 |
+
|
82 |
+
if not os.path.exists(destination_path):
|
83 |
+
os.makedirs(destination_path)
|
84 |
+
|
85 |
+
try:
|
86 |
+
shutil.move(source_path, destination_path)
|
87 |
+
print(f"File moved successfully from '{source_path}' to '{destination_path}'.")
|
88 |
+
except Exception as e:
|
89 |
+
print(f"Error: {e}")
|
90 |
+
|
91 |
+
|
92 |
+
def upper_abbreviation(text):
|
93 |
+
pattern1 = r'\b(?:[A-Z][a-z.]*\.?\s*)+\b'
|
94 |
+
pattern2 = re.compile(r'unknown', re.IGNORECASE)
|
95 |
+
def convert_to_upper(match):
|
96 |
+
return match.group(0).replace('.', '').upper()
|
97 |
+
text = re.sub(pattern2, '', text)
|
98 |
+
output_string = re.sub(pattern1, convert_to_upper, text)
|
99 |
+
return output_string
|
100 |
+
|
101 |
+
|
102 |
+
def get_valid_year(input_text):
|
103 |
+
four_letter_words = re.findall(r'\b\w{4}\b', input_text)
|
104 |
+
result_text = ' '.join(four_letter_words)
|
105 |
+
if len(result_text.split(' ')) > 1:
|
106 |
+
return ''.join(result_text.split(' ')[0])
|
107 |
+
return result_text
|
108 |
+
|
109 |
+
|
110 |
+
def sample_size_postproc(text):
|
111 |
+
words = text.split()
|
112 |
+
pattern = r'\b[A-Za-z]+\d+\b'
|
113 |
+
cleaned_words = [word for word in words if not re.match(r'.*\d.*[A-Za-z].*$', word)]
|
114 |
+
cleaned_text = ' '.join(cleaned_words)
|
115 |
+
cleaned_text = re.sub(pattern, '', cleaned_text)
|
116 |
+
return cleaned_text
|