Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
import os | |
from time import time_ns | |
import spaces | |
import gradio as gr | |
import torch | |
from transformers import LlamaForCausalLM, LlamaTokenizer | |
from kgen.generate import tag_gen | |
from kgen.metainfo import SPECIAL, TARGET | |
MODEL_PATHS = ["KBlueLeaf/DanTagGen-alpha", "KBlueLeaf/DanTagGen-beta", "KBlueLeaf/DanTagGen-gamma"] | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {DEVICE}") | |
def get_result( | |
text_model: LlamaForCausalLM, | |
tokenizer: LlamaTokenizer, | |
rating: str = "", | |
artist: str = "", | |
characters: str = "", | |
copyrights: str = "", | |
target: str = "long", | |
special_tags: list[str] = ["1girl"], | |
general: str = "", | |
aspect_ratio: float = 0.0, | |
blacklist: str = "", | |
escape_bracket: bool = False, | |
temperature: float = 1.35, | |
): | |
start = time_ns() | |
print("=" * 50, "\n") | |
# Use LLM to predict possible summary | |
# This prompt allow model itself to make request longer based on what it learned | |
# Which will be better for preference sim and pref-sum contrastive scorer | |
prompt = f""" | |
rating: {rating or '<|empty|>'} | |
artist: {artist.strip() or '<|empty|>'} | |
characters: {characters.strip() or '<|empty|>'} | |
copyrights: {copyrights.strip() or '<|empty|>'} | |
aspect ratio: {f"{aspect_ratio:.1f}" or '<|empty|>'} | |
target: {'<|' + target + '|>' if target else '<|long|>'} | |
general: {", ".join(special_tags)}, {general.strip().strip(",")}<|input_end|> | |
""".strip() | |
artist = artist.strip().strip(",").replace("_", " ") | |
characters = characters.strip().strip(",").replace("_", " ") | |
copyrights = copyrights.strip().strip(",").replace("_", " ") | |
special_tags = [tag.strip().replace("_", " ") for tag in special_tags] | |
general = general.strip().strip(",") | |
black_list = set( | |
[tag.strip().replace("_", " ") for tag in blacklist.strip().split(",")] | |
) | |
prompt_tags = special_tags + general.strip().strip(",").split(",") | |
len_target = TARGET[target] | |
llm_gen = "" | |
for llm_gen, extra_tokens in tag_gen( | |
text_model, | |
tokenizer, | |
prompt, | |
prompt_tags, | |
len_target, | |
black_list, | |
temperature=temperature, | |
top_p=0.95, | |
top_k=100, | |
max_new_tokens=256, | |
max_retry=5, | |
): | |
yield "", llm_gen, f"Total cost time: {(time_ns()-start)/1e9:.2f}s" | |
print() | |
print("-" * 50) | |
general = f"{general.strip().strip(',')}, {','.join(extra_tokens)}" | |
tags = general.strip().split(",") | |
tags = [tag.strip() for tag in tags if tag.strip()] | |
special = special_tags + [tag for tag in tags if tag in SPECIAL] | |
tags = [tag for tag in tags if tag not in special] | |
final_prompt = ", ".join(special) | |
if characters: | |
final_prompt += f", \n\n{characters}" | |
if copyrights: | |
final_prompt += ", " | |
if not characters: | |
final_prompt += "\n\n" | |
final_prompt += copyrights | |
if artist: | |
final_prompt += f", \n\n{artist}" | |
final_prompt += f""", \n\n{', '.join(tags)}, | |
masterpiece, newest, absurdres, {rating}""" | |
print(final_prompt) | |
print("=" * 50) | |
if escape_bracket: | |
final_prompt = ( | |
final_prompt.replace("[", "\\[") | |
.replace("]", "\\]") | |
.replace("(", "\\(") | |
.replace(")", "\\)") | |
) | |
yield final_prompt, llm_gen, f"Total cost time: {(time_ns()-start)/1e9:.2f}s | Total general tags: {len(special+tags)}" | |
if __name__ == "__main__": | |
models = { | |
model_path: [ | |
LlamaForCausalLM.from_pretrained( | |
model_path, attn_implementation="flash_attention_2" | |
) | |
.requires_grad_(False) | |
.eval() | |
.half() | |
.to(DEVICE), | |
LlamaTokenizer.from_pretrained(model_path), | |
] | |
for model_path in MODEL_PATHS | |
} | |
def wrapper( | |
model: str, | |
rating: str, | |
artist: str, | |
characters: str, | |
copyrights: str, | |
target: str, | |
special_tags: list[str], | |
general: str, | |
width: float, | |
height: float, | |
blacklist: str, | |
escape_bracket: bool, | |
temperature: float = 1.35, | |
): | |
text_model, tokenizer = models[model] | |
yield from get_result( | |
text_model, | |
tokenizer, | |
rating, | |
artist, | |
characters, | |
copyrights, | |
target, | |
special_tags, | |
general, | |
width / height, | |
blacklist, | |
escape_bracket, | |
temperature, | |
) | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("""# DanTagGen beta DEMO""") | |
with gr.Accordion("Introduction and Instructions"): | |
gr.Markdown( | |
""" | |
#### What is this: | |
DanTagGen(Danbooru Tag Generator) is a LLM model designed for generating Danboou Tags with provided informations.<br> | |
It aims to provide user a more convinient way to make prompts for Text2Image model which is trained on Danbooru datasets. | |
#### How to use it: | |
1. Fill the informations on the left section. | |
2. Put the general tags you want to use into the "Input your general tags" textarea. ("prompt before refined") | |
3. If you want to ban some tags. Put them into the "black list" text area. | |
4. Choose the target length: **Long or Short is recommended** | |
* Very Short: around 10 tags | |
* Short: around 20 tags | |
* Long: around 40 tags | |
* very long: around 60 tags | |
5. Adjust some parameters | |
* Width and height is for calculating the aspect ratio. It is recommended to directly put the height and width you want to use | |
6. Submit!! | |
7. You will get formated result on the upper-right section, LLM raw result on the bottom-right section. | |
#### Notice | |
The formated result use same format as what Kohaku-XL Delta used. <br> | |
The performance of using the output from this demo for other model is not guaranteed. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
rating = gr.Radio( | |
["safe", "sensitive", "nsfw", "nsfw, explicit"], | |
value="safe", | |
label="Rating", | |
) | |
special_tags = gr.Dropdown( | |
SPECIAL, | |
value=["1girl"], | |
label="Special tags", | |
multiselect=True, | |
) | |
characters = gr.Textbox(label="Characters") | |
copyrights = gr.Textbox(label="Copyrights(Series)") | |
artist = gr.Textbox(label="Artist") | |
target = gr.Radio( | |
["very_short", "short", "long", "very_long"], | |
value="long", | |
label="Target length", | |
) | |
with gr.Column(scale=2): | |
general = gr.TextArea(label="Input your general tags", lines=6) | |
black_list = gr.TextArea( | |
label="tag Black list (seperated by comma)", lines=5 | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
value=1024, | |
minimum=256, | |
maximum=4096, | |
step=32, | |
label="Width", | |
) | |
height = gr.Slider( | |
value=1024, | |
minimum=256, | |
maximum=4096, | |
step=32, | |
label="Height", | |
) | |
with gr.Row(): | |
temperature = gr.Slider( | |
value=1.35, | |
minimum=0.1, | |
maximum=2, | |
step=0.05, | |
label="Temperature", | |
) | |
escape_bracket = gr.Checkbox( | |
value=False, | |
label="Escape bracket", | |
) | |
model = gr.Dropdown( | |
list(models.keys()), | |
value=list(models.keys())[-1], | |
label="Model", | |
) | |
submit = gr.Button("Submit") | |
with gr.Column(scale=3): | |
formated_result = gr.TextArea( | |
label="Final output", lines=14, show_copy_button=True | |
) | |
llm_result = gr.TextArea(label="LLM output", lines=10) | |
cost_time = gr.Markdown() | |
submit.click( | |
wrapper, | |
inputs=[ | |
model, | |
rating, | |
artist, | |
characters, | |
copyrights, | |
target, | |
special_tags, | |
general, | |
width, | |
height, | |
black_list, | |
escape_bracket, | |
temperature, | |
], | |
outputs=[ | |
formated_result, | |
llm_result, | |
cost_time, | |
], | |
show_progress=True, | |
) | |
demo.launch() | |