Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,643 Bytes
a4db55a 41acb2e a4db55a 89f225d 4a7ac82 a4db55a 89f225d 0d5be9b 89f225d a4db55a edff9b1 a4db55a 89f225d a4db55a 89f225d a4db55a dc6d4cb a4db55a 8ea4ab5 89f225d 2296eae 8ea4ab5 2296eae d5cd173 2296eae d5cd173 89f225d a4db55a 061237a a4db55a 061237a a4db55a 89f225d a4db55a 89f225d a4db55a 89f225d a4db55a 89f225d a4db55a 8fd757f a4db55a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import os
from time import time_ns
import spaces
import gradio as gr
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
from kgen.generate import tag_gen
from kgen.metainfo import SPECIAL, TARGET
MODEL_PATHS = ["KBlueLeaf/DanTagGen-alpha", "KBlueLeaf/DanTagGen-beta"]
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")
@torch.no_grad()
def get_result(
text_model: LlamaForCausalLM,
tokenizer: LlamaTokenizer,
rating: str = "",
artist: str = "",
characters: str = "",
copyrights: str = "",
target: str = "long",
special_tags: list[str] = ["1girl"],
general: str = "",
aspect_ratio: float = 0.0,
blacklist: str = "",
escape_bracket: bool = False,
temperature: float = 1.35,
):
start = time_ns()
print("=" * 50, "\n")
# Use LLM to predict possible summary
# This prompt allow model itself to make request longer based on what it learned
# Which will be better for preference sim and pref-sum contrastive scorer
prompt = f"""
rating: {rating or '<|empty|>'}
artist: {artist.strip() or '<|empty|>'}
characters: {characters.strip() or '<|empty|>'}
copyrights: {copyrights.strip() or '<|empty|>'}
aspect ratio: {f"{aspect_ratio:.1f}" or '<|empty|>'}
target: {'<|' + target + '|>' if target else '<|long|>'}
general: {", ".join(special_tags)}, {general.strip().strip(",")}<|input_end|>
""".strip()
artist = artist.strip().strip(",").replace("_", " ")
characters = characters.strip().strip(",").replace("_", " ")
copyrights = copyrights.strip().strip(",").replace("_", " ")
special_tags = [tag.strip().replace("_", " ") for tag in special_tags]
general = general.strip().strip(",")
black_list = set(
[tag.strip().replace("_", " ") for tag in blacklist.strip().split(",")]
)
prompt_tags = special_tags + general.strip().strip(",").split(",")
len_target = TARGET[target]
llm_gen = ""
for llm_gen, extra_tokens in tag_gen(
text_model,
tokenizer,
prompt,
prompt_tags,
len_target,
black_list,
temperature=temperature,
top_p=0.95,
top_k=100,
max_new_tokens=256,
max_retry=5,
):
yield "", llm_gen, f"Total cost time: {(time_ns()-start)/1e9:.2f}s"
print()
print("-" * 50)
general = f"{general.strip().strip(',')}, {','.join(extra_tokens)}"
tags = general.strip().split(",")
tags = [tag.strip() for tag in tags if tag.strip()]
special = special_tags + [tag for tag in tags if tag in SPECIAL]
tags = [tag for tag in tags if tag not in special]
final_prompt = ", ".join(special)
if characters:
final_prompt += f", \n\n{characters}"
if copyrights:
final_prompt += ", "
if not characters:
final_prompt += "\n\n"
final_prompt += copyrights
if artist:
final_prompt += f", \n\n{artist}"
final_prompt += f""", \n\n{', '.join(tags)},
masterpiece, newest, absurdres, {rating}"""
print(final_prompt)
print("=" * 50)
if escape_bracket:
final_prompt = (
final_prompt.replace("[", "\\[")
.replace("]", "\\]")
.replace("(", "\\(")
.replace(")", "\\)")
)
yield final_prompt, llm_gen, f"Total cost time: {(time_ns()-start)/1e9:.2f}s | Total general tags: {len(special+tags)}"
if __name__ == "__main__":
models = {
model_path: [
LlamaForCausalLM.from_pretrained(
model_path, attn_implementation="flash_attention_2"
)
.requires_grad_(False)
.eval()
.half()
.to(DEVICE),
LlamaTokenizer.from_pretrained(model_path),
]
for model_path in MODEL_PATHS
}
@spaces.GPU
def wrapper(
model: str,
rating: str,
artist: str,
characters: str,
copyrights: str,
target: str,
special_tags: list[str],
general: str,
width: float,
height: float,
blacklist: str,
escape_bracket: bool,
temperature: float = 1.35,
):
text_model, tokenizer = models[model]
yield from get_result(
text_model,
tokenizer,
rating,
artist,
characters,
copyrights,
target,
special_tags,
general,
width / height,
blacklist,
escape_bracket,
temperature,
)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""# DanTagGen beta DEMO""")
with gr.Accordion("Introduction and Instructions"):
gr.Markdown(
"""
#### What is this:
DanTagGen(Danbooru Tag Generator) is a LLM model designed for generating Danboou Tags with provided informations.<br>
It aims to provide user a more convinient way to make prompts for Text2Image model which is trained on Danbooru datasets.
#### How to use it:
1. Fill the informations on the left section.
2. Put the general tags you want to use into the "Input your general tags" textarea. ("prompt before refined")
3. If you want to ban some tags. Put them into the "black list" text area.
4. Choose the target length: **Long or Short is recommended**
* Very Short: around 10 tags
* Short: around 20 tags
* Long: around 40 tags
* very long: around 60 tags
5. Adjust some parameters
* Width and height is for calculating the aspect ratio. It is recommended to directly put the height and width you want to use
6. Submit!!
7. You will get formated result on the upper-right section, LLM raw result on the bottom-right section.
#### Notice
The formated result use same format as what Kohaku-XL Delta used. <br>
The performance of using the output from this demo for other model is not guaranteed.
"""
)
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
with gr.Column(scale=2):
rating = gr.Radio(
["safe", "sensitive", "nsfw", "nsfw, explicit"],
value="safe",
label="Rating",
)
special_tags = gr.Dropdown(
SPECIAL,
value=["1girl"],
label="Special tags",
multiselect=True,
)
characters = gr.Textbox(label="Characters")
copyrights = gr.Textbox(label="Copyrights(Series)")
artist = gr.Textbox(label="Artist")
target = gr.Radio(
["very_short", "short", "long", "very_long"],
value="long",
label="Target length",
)
with gr.Column(scale=2):
general = gr.TextArea(label="Input your general tags", lines=6)
black_list = gr.TextArea(
label="tag Black list (seperated by comma)", lines=5
)
with gr.Row():
width = gr.Slider(
value=1024,
minimum=256,
maximum=4096,
step=32,
label="Width",
)
height = gr.Slider(
value=1024,
minimum=256,
maximum=4096,
step=32,
label="Height",
)
with gr.Row():
temperature = gr.Slider(
value=1.35,
minimum=0.1,
maximum=2,
step=0.05,
label="Temperature",
)
escape_bracket = gr.Checkbox(
value=False,
label="Escape bracket",
)
model = gr.Dropdown(
list(models.keys()),
value=list(models.keys())[-1],
label="Model",
)
submit = gr.Button("Submit")
with gr.Column(scale=3):
formated_result = gr.TextArea(
label="Final output", lines=14, show_copy_button=True
)
llm_result = gr.TextArea(label="LLM output", lines=10)
cost_time = gr.Markdown()
submit.click(
wrapper,
inputs=[
model,
rating,
artist,
characters,
copyrights,
target,
special_tags,
general,
width,
height,
black_list,
escape_bracket,
temperature,
],
outputs=[
formated_result,
llm_result,
cost_time,
],
show_progress=True,
)
demo.launch()
|