File size: 11,140 Bytes
47a3cb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import torch
import torch.nn as nn
import torchvision.transforms as T
from torch.autograd import grad
import argparse
from tqdm import tqdm

from syncdiffusion.utils import *
import lpips
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler

class SyncDiffusion(nn.Module):
    def __init__(self, device='cuda', sd_version='2.0', hf_key=None):
        super().__init__()

        self.device = device
        self.sd_version = sd_version

        print(f'[INFO] loading stable diffusion...')
        if hf_key is not None:
            print(f'[INFO] using hugging face custom model key: {hf_key}')
            model_key = hf_key
        elif self.sd_version == '2.1':
            model_key = "stabilityai/stable-diffusion-2-1-base"
        elif self.sd_version == '2.0':
            model_key = "stabilityai/stable-diffusion-2-base"
        elif self.sd_version == '1.5':
            model_key = "runwayml/stable-diffusion-v1-5"
        else:
            raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')

        # Load pretrained models from HuggingFace
        self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae").to(self.device)
        self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
        self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder").to(self.device)
        self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet").to(self.device)
        
        # Freeze models
        for p in self.unet.parameters():
            p.requires_grad_(False)
        for p in self.vae.parameters():
            p.requires_grad_(False)
        for p in self.text_encoder.parameters():
            p.requires_grad_(False)

        self.unet.eval() 
        self.vae.eval()
        self.text_encoder.eval()
        print(f'[INFO] loaded stable diffusion!')

        # Set DDIM scheduler
        self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")

        # load perceptual loss (LPIPS)
        self.percept_loss = lpips.LPIPS(net='vgg').to(self.device)
        print(f'[INFO] loaded perceptual loss!')

    def get_text_embeds(self, prompt, negative_prompt):
        # Tokenize text and get embeddings
        text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
                                    truncation=True, return_tensors='pt')
        text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]

        # Repeat for unconditional embeddings
        uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
                                      return_tensors='pt')
        uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]

        # Concatenate for final embeddings
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
        return text_embeddings

    def decode_latents(self, latents):
        latents = 1 / 0.18215 * latents
        imgs = self.vae.decode(latents).sample
        imgs = (imgs / 2 + 0.5).clamp(0, 1)
        return imgs
    
    def sample_syncdiffusion(
        self, 
        prompts, 
        negative_prompts="", 
        height=512, 
        width=2048, 
        latent_size=64,                     # fix latent size to 64 for Stable Diffusion
        num_inference_steps=50,
        guidance_scale=7.5, 
        sync_weight=20,                     # gradient descent weight 'w' in the paper
        sync_freq=1,                        # sync_freq=n: perform gradient descent every n steps
        sync_thres=50,                      # sync_thres=n: compute SyncDiffusion only for the first n steps
        sync_decay_rate=0.95,               # decay rate for sync_weight, set as 0.95 in the paper        
        stride=16,                          # stride for latents, set as 16 in the paper           
    ):  
        assert height >= 512 and width >= 512, 'height and width must be at least 512'
        assert height % (stride * 8) == 0 and width % (stride * 8) == 0, 'height and width must be divisible by the stride multiplied by 8'
        assert stride % 8 == 0 and stride < 64, 'stride must be divisible by 8 and smaller than the latent size of Stable Diffusion'

        if isinstance(prompts, str):
            prompts = [prompts]

        if isinstance(negative_prompts, str):
            negative_prompts = [negative_prompts]

        # obtain text embeddings
        text_embeds = self.get_text_embeds(prompts, negative_prompts)  # [2, 77, 768]

        # define a list of windows to process in parallel
        views = get_views(height, width, stride=stride)
        print(f"[INFO] number of views to process: {len(views)}")
        
        # Initialize latent
        latent = torch.randn((1, self.unet.in_channels, height // 8, width // 8))

        count = torch.zeros_like(latent, requires_grad=False, device=self.device)
        value = torch.zeros_like(latent, requires_grad=False, device=self.device)
        latent = latent.to(self.device)
        
        # set DDIM scheduler
        self.scheduler.set_timesteps(num_inference_steps)
        
        # set the anchor view as the middle view
        anchor_view_idx = len(views) // 2

        # set SyncDiffusion scheduler
        sync_scheduler = exponential_decay_list(
            init_weight=sync_weight,
            decay_rate=sync_decay_rate,
            num_steps=num_inference_steps
        )
        print(f'[INFO] using exponential decay scheduler with decay rate {sync_decay_rate}')

        with torch.autocast('cuda'):
            for i, t in enumerate(tqdm(self.scheduler.timesteps)):
                count.zero_()
                value.zero_()

                '''
                (1) First, obtain the reference anchor view (for computing the perceptual loss)
                '''
                with torch.no_grad():
                    if (i + 1) % sync_freq == 0 and i < sync_thres:
                        # decode the anchor view
                        h_start, h_end, w_start, w_end = views[anchor_view_idx]
                        latent_view = latent[:, :, h_start:h_end, w_start:w_end].detach()

                        latent_model_input = torch.cat([latent_view] * 2)                                               # 2 x 4 x 64 x 64
                        noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeds)['sample']

                        # perform guidance
                        noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
                        noise_pred_new = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)

                        # predict the 'foreseen denoised' latent (x0) of the anchor view
                        latent_pred_x0 = self.scheduler.step(noise_pred_new, t, latent_view)["pred_original_sample"]
                        decoded_image_anchor = self.decode_latents(latent_pred_x0)                                      # 1 x 3 x 512 x 512

                '''
                (2) Then perform SyncDiffusion and run a single denoising step
                '''
                for view_idx, (h_start, h_end, w_start, w_end) in enumerate(views):
                    latent_view = latent[:, :, h_start:h_end, w_start:w_end].detach()

                    ############################## BEGIN: PERFORM GRADIENT DESCENT (SyncDiffusion) ##############################
                    latent_view_copy = latent_view.clone().detach()

                    #### TODO: TEST ####
                    # if i % sync_freq == 0 and i < sync_thres:
                    if (i + 1) % sync_freq == 0 and i < sync_thres:
                        
                        # gradient on latent_view
                        latent_view = latent_view.requires_grad_()

                        # expand the latents for classifier-free guidance
                        latent_model_input = torch.cat([latent_view] * 2)

                        # predict the noise residual
                        noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeds)['sample']

                        # perform guidance
                        noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
                        noise_pred_new = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)

                        # compute the denoising step with the reference model
                        out = self.scheduler.step(noise_pred_new, t, latent_view)

                        # predict the 'foreseen denoised' latent (x0)
                        latent_view_x0 = out['pred_original_sample']

                        # decode the denoised latent
                        decoded_x0 = self.decode_latents(latent_view_x0)                 # 1 x 3 x 512 x 512
                        
                        # compute the perceptual loss (LPIPS)
                        percept_loss = self.percept_loss(
                            decoded_x0 * 2.0 - 1.0, 
                            decoded_image_anchor * 2.0 - 1.0
                        )

                        # compute the gradient of the perceptual loss w.r.t. the latent
                        norm_grad = grad(outputs=percept_loss, inputs=latent_view)[0]

                        # SyncDiffusion: update the original latent
                        if view_idx != anchor_view_idx:
                            latent_view_copy = latent_view_copy - sync_scheduler[i] * norm_grad                             # 1 x 4 x 64 x 64   
                    ############################## END: PERFORM GRADIENT DESCENT (SyncDiffusion) ##############################
                    
                    # after gradient descent, perform a single denoising step
                    with torch.no_grad():
                        latent_model_input = torch.cat([latent_view_copy] * 2)
                        noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeds)['sample']

                        noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
                        noise_pred_new = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)

                        out = self.scheduler.step(noise_pred_new, t, latent_view_copy)
                        latent_view_denoised = out['prev_sample'] 

                    # merge the latent views
                    value[:, :, h_start:h_end, w_start:w_end] += latent_view_denoised
                    count[:, :, h_start:h_end, w_start:w_end] += 1

                # take the MultiDiffusion step (average the latents)
                latent = torch.where(count > 0, value / count, value)

        # decode latents to panorama image
        with torch.no_grad():
            imgs = self.decode_latents(latent)  # [1, 3, 512, 512]
            img = T.ToPILImage()(imgs[0].cpu())

        print(f"[INFO] Done!")

        return img