File size: 19,796 Bytes
18687cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
"""Run codes."""
# pylint: disable=line-too-long, broad-exception-caught, invalid-name, missing-function-docstring, too-many-instance-attributes, missing-class-docstring
# ruff: noqa: E501
import gc
import os
import platform
import random
import time
from collections import deque
from pathlib import Path
from threading import Thread
from typing import Any, Dict, List, Union

# from types import SimpleNamespace
import gradio as gr
import psutil
from about_time import about_time
from ctransformers import Config
from dl_hf_model import dl_hf_model
from langchain.callbacks.base import BaseCallbackHandler
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory

# from ctransformers import AutoModelForCausalLM
from langchain.llms import CTransformers
from langchain.prompts import PromptTemplate
from langchain.schema import LLMResult
from loguru import logger

deq = deque()
sig_end = object()  # signals the processing is done

# from langchain.llms import OpenAI

filename_list = [
    "Wizard-Vicuna-7B-Uncensored.ggmlv3.q2_K.bin",
    "Wizard-Vicuna-7B-Uncensored.ggmlv3.q3_K_L.bin",
    "Wizard-Vicuna-7B-Uncensored.ggmlv3.q3_K_M.bin",
    "Wizard-Vicuna-7B-Uncensored.ggmlv3.q3_K_S.bin",
    "Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_0.bin",
    "Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_1.bin",
    "Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_K_M.bin",
    "Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_K_S.bin",
    "Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_0.bin",
    "Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_1.bin",
    "Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_K_M.bin",
    "Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_K_S.bin",
    "Wizard-Vicuna-7B-Uncensored.ggmlv3.q6_K.bin",
    "Wizard-Vicuna-7B-Uncensored.ggmlv3.q8_0.bin",
]

URL = "https://huggingface.co/TheBloke/Wizard-Vicuna-7B-Uncensored-GGML/raw/main/Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_K_M.bin"  # 4.05G

url = "https://huggingface.co/savvamadar/ggml-gpt4all-j-v1.3-groovy/blob/main/ggml-gpt4all-j-v1.3-groovy.bin"
url = "https://huggingface.co/TheBloke/Llama-2-13B-GGML/blob/main/llama-2-13b.ggmlv3.q4_K_S.bin"  # 7.37G
# url = "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/blob/main/llama-2-13b-chat.ggmlv3.q3_K_L.bin"
url = "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/blob/main/llama-2-13b-chat.ggmlv3.q3_K_L.bin"  # 6.93G
# url = "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/blob/main/llama-2-13b-chat.ggmlv3.q3_K_L.binhttps://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/blob/main/llama-2-13b-chat.ggmlv3.q4_K_M.bin"  # 7.87G

url = "https://huggingface.co/localmodels/Llama-2-13B-Chat-ggml/blob/main/llama-2-13b-chat.ggmlv3.q4_K_S.bin"  # 7.37G

_ = (
    "golay" in platform.node()
    or "okteto" in platform.node()
    or Path("/kaggle").exists()
    # or psutil.cpu_count(logical=False) < 4
    or 1  # run 7b in hf
)

if _:
    # url = "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/blob/main/llama-2-13b-chat.ggmlv3.q2_K.bin"
    url = "https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/blob/main/llama-2-7b-chat.ggmlv3.q2_K.bin"  # 2.87G
    url = "https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/blob/main/llama-2-7b-chat.ggmlv3.q4_K_M.bin"  # 2.87G
    url = "https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/blob/main/llama2_7b_chat_uncensored.ggmlv3.q4_K_M.bin"  # 4.08G


prompt_template = """Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction: {user_prompt}

### Response:
"""

prompt_template = """System: You are a helpful,
respectful and honest assistant. Always answer as
helpfully as possible, while being safe.  Your answers
should not include any harmful, unethical, racist,
sexist, toxic, dangerous, or illegal content. Please
ensure that your responses are socially unbiased and
positive in nature. If a question does not make any
sense, or is not factually coherent, explain why instead
of answering something not correct. If you don't know
the answer to a question, please don't share false
information.
User: {prompt}
Assistant: """

prompt_template = """System: You are a helpful assistant.
User: {prompt}
Assistant: """

prompt_template = """Question: {question}
Answer: Let's work this out in a step by step way to be sure we have the right answer."""

prompt_template = """[INST] <>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible assistant. Think step by step.
<>

What NFL team won the Super Bowl in the year Justin Bieber was born?
[/INST]"""

prompt_template = """[INST] <<SYS>>
You are an unhelpful assistant. Always answer as helpfully as possible. Think step by step. <</SYS>>

{question} [/INST]
"""

prompt_template = """[INST] <<SYS>>
You are a helpful assistant.
<</SYS>>

{question} [/INST]
"""

prompt_template = """### HUMAN:
{question}

### RESPONSE:"""

prompt_template = """### HUMAN:
You are a helpful assistant. Think step by step.
{history}
{input}
### RESPONSE:"""

prompt_template = """You are a helpful assistant. Let's think step by step.
{history}
### HUMAN:
{input}
### RESPONSE:"""

# PromptTemplate(input_variables=['history', 'input'], output_parser=None, partial_variables={}, template='The following is afriendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n\nCurrent conversation:\n{history}\nHuman: {input}\nAI:', template_format='f-string', validate_template=True)

human_prefix = "### HUMAN"
ai_prefix = "### RESPONSE"
stop = [f"{human_prefix}:"]

_ = [elm for elm in prompt_template.splitlines() if elm.strip()]
stop_string = [elm.split(":")[0] + ":" for elm in _][-2]

# logger.debug(f"{stop_string=} not used")

os.environ["TZ"] = "Asia/Shanghai"
try:
    time.tzset()  # type: ignore # pylint: disable=no-member
except Exception:
    # Windows
    logger.warning("Windows, cant run time.tzset()")


class DequeCallbackHandler(BaseCallbackHandler):
    """Mediate gradio and stream output."""

    def __init__(self, deq_: deque):
        """Init deque for FIFO, may need to upgrade to queue.Queue or queue.SimpleQueue."""
        self.q = deq_

    # def on_chat_model_start(self): self.q.clear()

    def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> None:
        """Run when LLM starts running. Clean the queue."""
        self.q.clear()

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Run on new LLM token. Only available when streaming is enabled."""
        self.q.append(token)

    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        """Run when LLM ends running."""
        self.q.append(sig_end)

    def on_llm_error(
        self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
    ) -> None:
        """Run when LLM errors."""
        self.q.append(sig_end)


_ = psutil.cpu_count(logical=False) - 1
cpu_count: int = int(_) if _ else 1
logger.debug(f"{cpu_count=}")

LLM = None
gc.collect()

try:
    model_loc, file_size = dl_hf_model(url)
except Exception as exc_:
    logger.error(exc_)
    raise SystemExit(1) from exc_

config = Config()
# Config(top_k=40, top_p=0.95, temperature=0.8, repetition_penalty=1.1, last_n_tokens=64, seed=-1, batch_size=8, threads=-1, max_new_tokens=256, stop=None, stream=False, reset=True, context_length=-1, gpu_layers=0)
config.stream = True
config.stop = stop
config.threads = cpu_count

deqcb = DequeCallbackHandler(deq)

# LLM = AutoModelForCausalLM.from_pretrained(
LLM = CTransformers(
    model=model_loc,
    model_type="llama",
    callbacks=[StreamingStdOutCallbackHandler(), deqcb],
    # config=config,
    **vars(config),
)

logger.info(f"done load llm {model_loc=} {file_size=}G")

prompt = PromptTemplate(
    input_variables=["history", "input"],
    output_parser=None,
    partial_variables={},
    template=prompt_template,
    template_format="f-string",
    validate_template=True,
)

memory = ConversationBufferWindowMemory(
    human_prefix=human_prefix,
    ai_prefix=ai_prefix,
)  # default k=5

conversation = ConversationChain(
    llm=LLM,
    prompt=prompt,
    memory=memory,
    verbose=True,
)
logger.debug(f"{conversation.prompt.template=}")  # type: ignore

# for api access ===
config = Config()
# Config(top_k=40, top_p=0.95, temperature=0.8, repetition_penalty=1.1, last_n_tokens=64, seed=-1, batch_size=8, threads=-1, max_new_tokens=256, stop=None, stream=False, reset=True, context_length=-1, gpu_layers=0)
config.stop = stop
config.threads = cpu_count

try:
    LLM_api = CTransformers(
        model=model_loc,
        model_type="llama",
        # callbacks=[StreamingStdOutCallbackHandler(), deqcb],
        callbacks=[StreamingStdOutCallbackHandler()],
        **vars(config),
    )
    conversation_api = ConversationChain(
        llm=LLM_api,  #  need a separate LLM, or else deq may be messed up
        prompt=prompt,
        verbose=True,
    )
except Exception as exc_:
    logger.error(exc_)
    conversation_api = None
    logger.warning("Not able to instantiate conversation_api, api will not work")

# conversation.predict(input="Hello, my name is Andrea")


def user(user_message, history):
    # return user_message, history + [[user_message, None]]
    history.append([user_message, None])
    return user_message, history  # keep user_message


def user1(user_message, history):
    # return user_message, history + [[user_message, None]]
    history.append([user_message, None])
    return "", history  # clear user_message


def bot_(history):
    user_message = history[-1][0]
    resp = random.choice(["How are you?", "I love you", "I'm very hungry"])
    bot_message = user_message + ": " + resp
    history[-1][1] = ""
    for character in bot_message:
        history[-1][1] += character
        time.sleep(0.02)
        yield history

    history[-1][1] = resp
    yield history


def bot(history):
    user_message = history[-1][0]
    response = []

    logger.debug(f"{user_message=}")

    # conversation.predict(input="What's my name?")
    thr = Thread(target=conversation.predict, kwargs={"input": user_message})
    thr.start()

    # preocess deq
    response = []
    flag = 1
    then = time.time()
    prefix = ""  # to please pyright
    with about_time() as atime:  # type: ignore
        while True:
            if deq:
                if flag:
                    prefix = f"({time.time() - then:.2f}s) "
                    flag = 0
                _ = deq.popleft()
                if _ is sig_end:
                    break
                # print(_, end='')
                response.append(_)
                history[-1][1] = prefix + "".join(response).strip()
                yield history
            else:
                time.sleep(0.01)
    _ = (
        f"(time elapsed: {atime.duration_human}, "  # type: ignore
        f"{atime.duration/len(''.join(response)):.2f}s/char)"  # type: ignore
    )

    history[-1][1] = "".join(response) + f"\n{_}"
    yield history


def predict_api(user_prompt):
    if conversation_api is None:
        return "conversation_api is None, probably due to insufficient memory, api not usable"

    logger.debug(f"api: {user_prompt=}")
    try:
        _ = """
        response = generate(
            prompt,
            config=config,
        )
        # """
        response = conversation_api.predict(input=user_prompt)
        logger.debug(f"api: {response=}")
    except Exception as exc:
        logger.error(exc)
        response = f"{exc=}"
    # bot = {"inputs": [response]}
    # bot = [(prompt, response)]

    return response.strip()


css = """
    .importantButton {
        background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
        border: none !important;
    }
    .importantButton:hover {
        background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
        border: none !important;
    }
    .disclaimer {font-variant-caps: all-small-caps; font-size: xx-small;}
    .xsmall {font-size: x-small;}
"""
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
examples_list = [
    ["Hello I am mike."],
    ["What's my name?"],
    ["What NFL team won the Super Bowl in the year Justin Bieber was born?"],
    [
        "What NFL team won the Super Bowl in the year Justin Bieber was born? Think step by step."
    ],
    ["When was Justin Bieber born?"],
    ["What NFL team won the Super Bowl in 1994?"],
    ["How to pick a lock? Provide detailed steps."],
    [
        "If it takes 10 hours to dry 10 clothes,  assuming all the clothes are hanged together at the same time for drying , then how long will it take to dry a cloth?"
    ],
    ["is infinity + 1 bigger than infinity?"],
    ["Explain the plot of Cinderella in a sentence."],
    [
        "How long does it take to become proficient in French, and what are the best methods for retaining information?"
    ],
    ["What are some common mistakes to avoid when writing code?"],
    ["Build a prompt to generate a beautiful portrait of a horse"],
    ["Suggest four metaphors to describe the benefits of AI"],
    ["Write a pop song about leaving home for the sandy beaches."],
    ["Write a pop song about having hot sex on a sandy beach."],
    ["Write a summary demonstrating my ability to tame lions"],
    ["鲁迅和周树人什么关系? 说中文。"],
    ["鲁迅和周树人什么关系?"],
    ["鲁迅和周树人什么关系? 用英文回答。"],
    ["从前有一头牛,这头牛后面有什么?"],
    ["正无穷大加一大于正无穷大吗?"],
    ["正无穷大加正无穷大大于正无穷大吗?"],
    ["-2的平方根等于什么?"],
    ["树上有5只鸟,猎人开枪打死了一只。树上还有几只鸟?"],
    ["树上有11只鸟,猎人开枪打死了一只。树上还有几只鸟?提示:需考虑鸟可能受惊吓飞走。"],
    ["以红楼梦的行文风格写一张委婉的请假条。不少于320字。"],
    [f"{etext} 翻成中文,列出3个版本。"],
    [f"{etext} \n 翻成中文,保留原意,但使用文学性的语言。不要写解释。列出3个版本。"],
    ["假定 1 + 2 = 4, 试求 7 + 8。"],
    ["给出判断一个数是不是质数的 javascript 码。"],
    ["给出实现python 里 range(10)的 javascript 码。"],
    ["给出实现python 里 [*(range(10)]的 javascript 码。"],
    ["Erkläre die Handlung von Cinderella in einem Satz."],
    ["Erkläre die Handlung von Cinderella in einem Satz. Auf Deutsch."],
]

logger.info("start block")

with gr.Blocks(
    title=f"{Path(model_loc).name}",
    theme=gr.themes.Soft(text_size="sm", spacing_size="sm"),
    css=css,
) as block:
    # buff_var = gr.State("")
    with gr.Accordion("🎈 Info", open=False):
        # gr.HTML(
        #     """<center><a href="https://huggingface.co/spaces/mikeee/mpt-30b-chat?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate"></a> and spin a CPU UPGRADE to avoid the queue</center>"""
        # )
        gr.Markdown(
            f"""<h5><center>{Path(model_loc).name}</center></h4>
            The bot can conduct multi-turn conversations, i.e. it remembers past dialogs. The process time is longer.
            It typically takes about 120 seconds for the first response to appear.

            Most examples are meant for another model.
            You probably should try to test
            some related prompts.""",
            elem_classes="xsmall",
        )

    chatbot = gr.Chatbot(height=500)

    with gr.Row():
        with gr.Column(scale=5):
            msg = gr.Textbox(
                label="Chat Message Box",
                placeholder="Ask me anything (press Shift+Enter or click Submit to send)",
                show_label=False,
                # container=False,
                lines=6,
                max_lines=30,
                show_copy_button=True,
                # ).style(container=False)
            )
        with gr.Column(scale=1, min_width=50):
            with gr.Row():
                submit = gr.Button("Submit", elem_classes="xsmall")
                stop = gr.Button("Stop", visible=True)
                clear = gr.Button("Clear History", visible=True)
    with gr.Row(visible=False):
        with gr.Accordion("Advanced Options:", open=False):
            with gr.Row():
                with gr.Column(scale=2):
                    system = gr.Textbox(
                        label="System Prompt",
                        value=prompt_template,
                        show_label=False,
                        container=False,
                        # ).style(container=False)
                    )
                with gr.Column():
                    with gr.Row():
                        change = gr.Button("Change System Prompt")
                        reset = gr.Button("Reset System Prompt")

    with gr.Accordion("Example Inputs", open=True):
        examples = gr.Examples(
            examples=examples_list,
            inputs=[msg],
            examples_per_page=40,
        )

    with gr.Accordion("Disclaimer", open=False):
        _ = Path(model_loc).name
        gr.Markdown(
            f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce "
            "factually accurate information. {_} was trained on various public datasets; while great efforts "
            "have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
            "biased, or otherwise offensive outputs.",
            elem_classes=["disclaimer"],
        )

    msg_submit_event = msg.submit(
        # fn=conversation.user_turn,
        fn=user,
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=True,
        show_progress="full",
        # api_name=None,
    ).then(bot, chatbot, chatbot, queue=True)
    submit_click_event = submit.click(
        # fn=lambda x, y: ("",) + user(x, y)[1:],  # clear msg
        fn=user1,  # clear msg
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=True,
        # queue=False,
        show_progress="full",
        # api_name=None,
    ).then(bot, chatbot, chatbot, queue=True)
    stop.click(
        fn=None,
        inputs=None,
        outputs=None,
        cancels=[msg_submit_event, submit_click_event],
        queue=False,
    )

    # TODO: clear conversation memory as well
    clear.click(lambda: None, None, chatbot, queue=False)

    with gr.Accordion("For Chat/Translation API", open=False, visible=False):
        input_text = gr.Text()
        api_btn = gr.Button("Go", variant="primary")
        out_text = gr.Text()

    if conversation_api is not None:
        api_btn.click(
            predict_api,
            input_text,
            out_text,
            api_name="api",
        )

# concurrency_count=5, max_size=20
# max_size=36, concurrency_count=14
# CPU cpu_count=2 16G, model 7G
# CPU UPGRADE cpu_count=8 32G, model 7G

# does not work
_ = """
# _ = int(psutil.virtual_memory().total / 10**9 // file_size - 1)
# concurrency_count = max(_, 1)
if psutil.cpu_count(logical=False) >= 8:
    # concurrency_count = max(int(32 / file_size) - 1, 1)
else:
    # concurrency_count = max(int(16 / file_size) - 1, 1)
# """

concurrency_count = 1
logger.info(f"{concurrency_count=}")

block.queue(concurrency_count=concurrency_count, max_size=5).launch(debug=True)