|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.loaders import PeftAdapterMixin
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
from diffusers.models.attention_processor import AttentionProcessor
|
|
from diffusers.utils import (
|
|
USE_PEFT_BACKEND,
|
|
is_torch_version,
|
|
logging,
|
|
scale_lora_layers,
|
|
unscale_lora_layers,
|
|
)
|
|
from diffusers.models.controlnet import BaseOutput, zero_module
|
|
from diffusers.models.embeddings import (
|
|
CombinedTimestepGuidanceTextProjEmbeddings,
|
|
CombinedTimestepTextProjEmbeddings,
|
|
)
|
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
|
from transformer_flux import (
|
|
EmbedND,
|
|
FluxSingleTransformerBlock,
|
|
FluxTransformerBlock,
|
|
)
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class FluxControlNetOutput(BaseOutput):
|
|
controlnet_block_samples: Tuple[torch.Tensor]
|
|
controlnet_single_block_samples: Tuple[torch.Tensor]
|
|
|
|
|
|
class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
_supports_gradient_checkpointing = True
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
patch_size: int = 1,
|
|
in_channels: int = 64,
|
|
num_layers: int = 19,
|
|
num_single_layers: int = 38,
|
|
attention_head_dim: int = 128,
|
|
num_attention_heads: int = 24,
|
|
joint_attention_dim: int = 4096,
|
|
pooled_projection_dim: int = 768,
|
|
guidance_embeds: bool = False,
|
|
axes_dims_rope: List[int] = [16, 56, 56],
|
|
extra_condition_channels: int = 1 * 4,
|
|
):
|
|
super().__init__()
|
|
self.out_channels = in_channels
|
|
self.inner_dim = num_attention_heads * attention_head_dim
|
|
|
|
self.pos_embed = EmbedND(
|
|
dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope
|
|
)
|
|
text_time_guidance_cls = (
|
|
CombinedTimestepGuidanceTextProjEmbeddings
|
|
if guidance_embeds
|
|
else CombinedTimestepTextProjEmbeddings
|
|
)
|
|
self.time_text_embed = text_time_guidance_cls(
|
|
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
|
)
|
|
|
|
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
|
self.x_embedder = nn.Linear(in_channels, self.inner_dim)
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
FluxTransformerBlock(
|
|
dim=self.inner_dim,
|
|
num_attention_heads=num_attention_heads,
|
|
attention_head_dim=attention_head_dim,
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
)
|
|
|
|
self.single_transformer_blocks = nn.ModuleList(
|
|
[
|
|
FluxSingleTransformerBlock(
|
|
dim=self.inner_dim,
|
|
num_attention_heads=num_attention_heads,
|
|
attention_head_dim=attention_head_dim,
|
|
)
|
|
for _ in range(num_single_layers)
|
|
]
|
|
)
|
|
|
|
|
|
self.controlnet_blocks = nn.ModuleList([])
|
|
for _ in range(len(self.transformer_blocks)):
|
|
self.controlnet_blocks.append(
|
|
zero_module(nn.Linear(self.inner_dim, self.inner_dim))
|
|
)
|
|
|
|
self.controlnet_single_blocks = nn.ModuleList([])
|
|
for _ in range(len(self.single_transformer_blocks)):
|
|
self.controlnet_single_blocks.append(
|
|
zero_module(nn.Linear(self.inner_dim, self.inner_dim))
|
|
)
|
|
|
|
self.controlnet_x_embedder = zero_module(
|
|
torch.nn.Linear(in_channels + extra_condition_channels, self.inner_dim)
|
|
)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
@property
|
|
|
|
def attn_processors(self):
|
|
r"""
|
|
Returns:
|
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
|
indexed by its weight name.
|
|
"""
|
|
|
|
processors = {}
|
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
|
if hasattr(module, "get_processor"):
|
|
processors[f"{name}.processor"] = module.get_processor()
|
|
|
|
for sub_name, child in module.named_children():
|
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
|
|
|
return processors
|
|
|
|
for name, module in self.named_children():
|
|
fn_recursive_add_processors(name, module, processors)
|
|
|
|
return processors
|
|
|
|
|
|
def set_attn_processor(self, processor):
|
|
r"""
|
|
Sets the attention processor to use to compute attention.
|
|
|
|
Parameters:
|
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
|
for **all** `Attention` layers.
|
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
|
processor. This is strongly recommended when setting trainable attention processors.
|
|
|
|
"""
|
|
count = len(self.attn_processors.keys())
|
|
|
|
if isinstance(processor, dict) and len(processor) != count:
|
|
raise ValueError(
|
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
|
)
|
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
|
if hasattr(module, "set_processor"):
|
|
if not isinstance(processor, dict):
|
|
module.set_processor(processor)
|
|
else:
|
|
module.set_processor(processor.pop(f"{name}.processor"))
|
|
|
|
for sub_name, child in module.named_children():
|
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
|
|
|
for name, module in self.named_children():
|
|
fn_recursive_attn_processor(name, module, processor)
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False):
|
|
if hasattr(module, "gradient_checkpointing"):
|
|
module.gradient_checkpointing = value
|
|
|
|
@classmethod
|
|
def from_transformer(
|
|
cls,
|
|
transformer,
|
|
num_layers: int = 4,
|
|
num_single_layers: int = 10,
|
|
attention_head_dim: int = 128,
|
|
num_attention_heads: int = 24,
|
|
load_weights_from_transformer=True,
|
|
):
|
|
config = transformer.config
|
|
config["num_layers"] = num_layers
|
|
config["num_single_layers"] = num_single_layers
|
|
config["attention_head_dim"] = attention_head_dim
|
|
config["num_attention_heads"] = num_attention_heads
|
|
|
|
controlnet = cls(**config)
|
|
|
|
if load_weights_from_transformer:
|
|
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
|
|
controlnet.time_text_embed.load_state_dict(
|
|
transformer.time_text_embed.state_dict()
|
|
)
|
|
controlnet.context_embedder.load_state_dict(
|
|
transformer.context_embedder.state_dict()
|
|
)
|
|
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
|
|
controlnet.transformer_blocks.load_state_dict(
|
|
transformer.transformer_blocks.state_dict(), strict=False
|
|
)
|
|
controlnet.single_transformer_blocks.load_state_dict(
|
|
transformer.single_transformer_blocks.state_dict(), strict=False
|
|
)
|
|
|
|
controlnet.controlnet_x_embedder = zero_module(
|
|
controlnet.controlnet_x_embedder
|
|
)
|
|
|
|
return controlnet
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
controlnet_cond: torch.Tensor,
|
|
conditioning_scale: float = 1.0,
|
|
encoder_hidden_states: torch.Tensor = None,
|
|
pooled_projections: torch.Tensor = None,
|
|
timestep: torch.LongTensor = None,
|
|
img_ids: torch.Tensor = None,
|
|
txt_ids: torch.Tensor = None,
|
|
guidance: torch.Tensor = None,
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
return_dict: bool = True,
|
|
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
|
"""
|
|
The [`FluxTransformer2DModel`] forward method.
|
|
|
|
Args:
|
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
|
Input `hidden_states`.
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
|
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
|
from the embeddings of input conditions.
|
|
timestep ( `torch.LongTensor`):
|
|
Used to indicate denoising step.
|
|
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
|
A list of tensors that if specified are added to the residuals of transformer blocks.
|
|
joint_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
|
tuple.
|
|
|
|
Returns:
|
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
|
`tuple` where the first element is the sample tensor.
|
|
"""
|
|
if joint_attention_kwargs is not None:
|
|
joint_attention_kwargs = joint_attention_kwargs.copy()
|
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
|
else:
|
|
lora_scale = 1.0
|
|
|
|
if USE_PEFT_BACKEND:
|
|
|
|
scale_lora_layers(self, lora_scale)
|
|
else:
|
|
if (
|
|
joint_attention_kwargs is not None
|
|
and joint_attention_kwargs.get("scale", None) is not None
|
|
):
|
|
logger.warning(
|
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
|
)
|
|
hidden_states = self.x_embedder(hidden_states)
|
|
|
|
|
|
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
|
|
|
|
timestep = timestep.to(hidden_states.dtype) * 1000
|
|
if guidance is not None:
|
|
guidance = guidance.to(hidden_states.dtype) * 1000
|
|
else:
|
|
guidance = None
|
|
temb = (
|
|
self.time_text_embed(timestep, pooled_projections)
|
|
if guidance is None
|
|
else self.time_text_embed(timestep, guidance, pooled_projections)
|
|
)
|
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
|
|
|
txt_ids = txt_ids.expand(img_ids.size(0), -1, -1)
|
|
ids = torch.cat((txt_ids, img_ids), dim=1)
|
|
image_rotary_emb = self.pos_embed(ids)
|
|
|
|
block_samples = ()
|
|
for _, block in enumerate(self.transformer_blocks):
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = (
|
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
)
|
|
(
|
|
encoder_hidden_states,
|
|
hidden_states,
|
|
) = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(block),
|
|
hidden_states,
|
|
encoder_hidden_states,
|
|
temb,
|
|
image_rotary_emb,
|
|
**ckpt_kwargs,
|
|
)
|
|
|
|
else:
|
|
encoder_hidden_states, hidden_states = block(
|
|
hidden_states=hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
temb=temb,
|
|
image_rotary_emb=image_rotary_emb,
|
|
)
|
|
block_samples = block_samples + (hidden_states,)
|
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
|
|
|
single_block_samples = ()
|
|
for _, block in enumerate(self.single_transformer_blocks):
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = (
|
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
)
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(block),
|
|
hidden_states,
|
|
temb,
|
|
image_rotary_emb,
|
|
**ckpt_kwargs,
|
|
)
|
|
|
|
else:
|
|
hidden_states = block(
|
|
hidden_states=hidden_states,
|
|
temb=temb,
|
|
image_rotary_emb=image_rotary_emb,
|
|
)
|
|
single_block_samples = single_block_samples + (
|
|
hidden_states[:, encoder_hidden_states.shape[1] :],
|
|
)
|
|
|
|
|
|
controlnet_block_samples = ()
|
|
for block_sample, controlnet_block in zip(
|
|
block_samples, self.controlnet_blocks
|
|
):
|
|
block_sample = controlnet_block(block_sample)
|
|
controlnet_block_samples = controlnet_block_samples + (block_sample,)
|
|
|
|
controlnet_single_block_samples = ()
|
|
for single_block_sample, controlnet_block in zip(
|
|
single_block_samples, self.controlnet_single_blocks
|
|
):
|
|
single_block_sample = controlnet_block(single_block_sample)
|
|
controlnet_single_block_samples = controlnet_single_block_samples + (
|
|
single_block_sample,
|
|
)
|
|
|
|
|
|
controlnet_block_samples = [
|
|
sample * conditioning_scale for sample in controlnet_block_samples
|
|
]
|
|
controlnet_single_block_samples = [
|
|
sample * conditioning_scale for sample in controlnet_single_block_samples
|
|
]
|
|
|
|
|
|
controlnet_block_samples = (
|
|
None if len(controlnet_block_samples) == 0 else controlnet_block_samples
|
|
)
|
|
controlnet_single_block_samples = (
|
|
None
|
|
if len(controlnet_single_block_samples) == 0
|
|
else controlnet_single_block_samples
|
|
)
|
|
|
|
if USE_PEFT_BACKEND:
|
|
|
|
unscale_lora_layers(self, lora_scale)
|
|
|
|
if not return_dict:
|
|
return (controlnet_block_samples, controlnet_single_block_samples)
|
|
|
|
return FluxControlNetOutput(
|
|
controlnet_block_samples=controlnet_block_samples,
|
|
controlnet_single_block_samples=controlnet_single_block_samples,
|
|
)
|
|
|