File size: 45,592 Bytes
69c26b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
import inspect
from typing import Any, Callable, Dict, List, Optional, Union

import numpy as np
import torch
from transformers import (
    CLIPTextModel,
    CLIPTokenizer,
    T5EncoderModel,
    T5TokenizerFast,
)

from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import FluxLoraLoaderMixin
from diffusers.models.autoencoders import AutoencoderKL

from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import (
    USE_PEFT_BACKEND,
    is_torch_xla_available,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput

from transformer_flux import FluxTransformer2DModel
from controlnet_flux import FluxControlNetModel

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """

    Examples:

        ```py

        >>> import torch

        >>> from diffusers.utils import load_image

        >>> from diffusers import FluxControlNetPipeline

        >>> from diffusers import FluxControlNetModel



        >>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny-alpha"

        >>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)

        >>> pipe = FluxControlNetPipeline.from_pretrained(

        ...     base_model, controlnet=controlnet, torch_dtype=torch.bfloat16

        ... )

        >>> pipe.to("cuda")

        >>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")

        >>> control_mask = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")

        >>> prompt = "A girl in city, 25 years old, cool, futuristic"

        >>> image = pipe(

        ...     prompt,

        ...     control_image=control_image,

        ...     controlnet_conditioning_scale=0.6,

        ...     num_inference_steps=28,

        ...     guidance_scale=3.5,

        ... ).images[0]

        >>> image.save("flux.png")

        ```

"""


# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
def calculate_shift(

    image_seq_len,

    base_seq_len: int = 256,

    max_seq_len: int = 4096,

    base_shift: float = 0.5,

    max_shift: float = 1.16,

):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(

    scheduler,

    num_inference_steps: Optional[int] = None,

    device: Optional[Union[str, torch.device]] = None,

    timesteps: Optional[List[int]] = None,

    sigmas: Optional[List[float]] = None,

    **kwargs,

):
    """

    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles

    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.



    Args:

        scheduler (`SchedulerMixin`):

            The scheduler to get timesteps from.

        num_inference_steps (`int`):

            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`

            must be `None`.

        device (`str` or `torch.device`, *optional*):

            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.

        timesteps (`List[int]`, *optional*):

            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,

            `num_inference_steps` and `sigmas` must be `None`.

        sigmas (`List[float]`, *optional*):

            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,

            `num_inference_steps` and `timesteps` must be `None`.



    Returns:

        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the

        second element is the number of inference steps.

    """
    if timesteps is not None and sigmas is not None:
        raise ValueError(
            "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
        )
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


class FluxControlNetInpaintingPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
    r"""

    The Flux pipeline for text-to-image generation.



    Reference: https://blackforestlabs.ai/announcing-black-forest-labs/



    Args:

        transformer ([`FluxTransformer2DModel`]):

            Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.

        scheduler ([`FlowMatchEulerDiscreteScheduler`]):

            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.

        vae ([`AutoencoderKL`]):

            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.

        text_encoder ([`CLIPTextModel`]):

            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically

            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.

        text_encoder_2 ([`T5EncoderModel`]):

            [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically

            the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.

        tokenizer (`CLIPTokenizer`):

            Tokenizer of class

            [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).

        tokenizer_2 (`T5TokenizerFast`):

            Second Tokenizer of class

            [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).

    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
    _optional_components = []
    _callback_tensor_inputs = ["latents", "prompt_embeds"]

    def __init__(

        self,

        scheduler: FlowMatchEulerDiscreteScheduler,

        vae: AutoencoderKL,

        text_encoder: CLIPTextModel,

        tokenizer: CLIPTokenizer,

        text_encoder_2: T5EncoderModel,

        tokenizer_2: T5TokenizerFast,

        transformer: FluxTransformer2DModel,

        controlnet: FluxControlNetModel,

    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            transformer=transformer,
            scheduler=scheduler,
            controlnet=controlnet,
        )
        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels))
            if hasattr(self, "vae") and self.vae is not None
            else 16
        )
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_resize=True, do_convert_rgb=True, do_normalize=True)
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor,
            do_resize=True,
            do_convert_grayscale=True,
            do_normalize=False,
            do_binarize=True,
        )
        self.tokenizer_max_length = (
            self.tokenizer.model_max_length
            if hasattr(self, "tokenizer") and self.tokenizer is not None
            else 77
        )
        self.default_sample_size = 64
    
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    def _get_t5_prompt_embeds(

        self,

        prompt: Union[str, List[str]] = None,

        num_images_per_prompt: int = 1,

        max_sequence_length: int = 512,

        device: Optional[torch.device] = None,

        dtype: Optional[torch.dtype] = None,

    ):
        device = device or self._execution_device
        dtype = dtype or self.text_encoder.dtype

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        text_inputs = self.tokenizer_2(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            return_length=False,
            return_overflowing_tokens=False,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer_2(
            prompt, padding="longest", return_tensors="pt"
        ).input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer_2.batch_decode(
                untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
            )
            logger.warning(
                "The following part of your input was truncated because `max_sequence_length` is set to "
                f" {max_sequence_length} tokens: {removed_text}"
            )

        prompt_embeds = self.text_encoder_2(
            text_input_ids.to(device), output_hidden_states=False
        )[0]

        dtype = self.text_encoder_2.dtype
        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        _, seq_len, _ = prompt_embeds.shape

        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(
            batch_size * num_images_per_prompt, seq_len, -1
        )

        return prompt_embeds

    def _get_clip_prompt_embeds(

        self,

        prompt: Union[str, List[str]],

        num_images_per_prompt: int = 1,

        device: Optional[torch.device] = None,

    ):
        device = device or self._execution_device

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer_max_length,
            truncation=True,
            return_overflowing_tokens=False,
            return_length=False,
            return_tensors="pt",
        )

        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(
            prompt, padding="longest", return_tensors="pt"
        ).input_ids
        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer.batch_decode(
                untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
            )
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer_max_length} tokens: {removed_text}"
            )
        prompt_embeds = self.text_encoder(
            text_input_ids.to(device), output_hidden_states=False
        )

        # Use pooled output of CLIPTextModel
        prompt_embeds = prompt_embeds.pooler_output
        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)

        return prompt_embeds

    def encode_prompt(

        self,

        prompt: Union[str, List[str]],

        prompt_2: Union[str, List[str]],

        device: Optional[torch.device] = None,

        num_images_per_prompt: int = 1,

        do_classifier_free_guidance: bool = True,

        negative_prompt: Optional[Union[str, List[str]]] = None,

        negative_prompt_2: Optional[Union[str, List[str]]] = None,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,

        max_sequence_length: int = 512,

        lora_scale: Optional[float] = None,

    ):
        r"""



        Args:

            prompt (`str` or `List[str]`, *optional*):

                prompt to be encoded

            prompt_2 (`str` or `List[str]`, *optional*):

                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is

                used in all text-encoders

            device: (`torch.device`):

                torch device

            num_images_per_prompt (`int`):

                number of images that should be generated per prompt

            do_classifier_free_guidance (`bool`):

                whether to use classifier-free guidance or not

            negative_prompt (`str` or `List[str]`, *optional*):

                negative prompt to be encoded

            negative_prompt_2 (`str` or `List[str]`, *optional*):

                negative prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is

                used in all text-encoders

            prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.

                If not provided, pooled text embeddings will be generated from `prompt` input argument.

            clip_skip (`int`, *optional*):

                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that

                the output of the pre-final layer will be used for computing the prompt embeddings.

            lora_scale (`float`, *optional*):

                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

        """
        device = device or self._execution_device

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None and USE_PEFT_BACKEND:
                scale_lora_layers(self.text_encoder, lora_scale)
            if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
                scale_lora_layers(self.text_encoder_2, lora_scale)

        prompt = [prompt] if isinstance(prompt, str) else prompt
        if prompt is not None:
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

            # We only use the pooled prompt output from the CLIPTextModel
            pooled_prompt_embeds = self._get_clip_prompt_embeds(
                prompt=prompt,
                device=device,
                num_images_per_prompt=num_images_per_prompt,
            )
            prompt_embeds = self._get_t5_prompt_embeds(
                prompt=prompt_2,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
                device=device,
            )

        if do_classifier_free_guidance:
            # 处理 negative prompt
            negative_prompt = negative_prompt or ""
            negative_prompt_2 = negative_prompt_2 or negative_prompt
            
            negative_pooled_prompt_embeds = self._get_clip_prompt_embeds(
                negative_prompt,
                device=device,
                num_images_per_prompt=num_images_per_prompt,
            )
            negative_prompt_embeds = self._get_t5_prompt_embeds(
                negative_prompt_2,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
                device=device,
            )
        else:
            negative_pooled_prompt_embeds = None
            negative_prompt_embeds = None            

        if self.text_encoder is not None:
            if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        if self.text_encoder_2 is not None:
            if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder_2, lora_scale)

        text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(
            device=device, dtype=self.text_encoder.dtype
        )

        return prompt_embeds, pooled_prompt_embeds, negative_prompt_embeds, negative_pooled_prompt_embeds,text_ids

    def check_inputs(

        self,

        prompt,

        prompt_2,

        height,

        width,

        prompt_embeds=None,

        pooled_prompt_embeds=None,

        callback_on_step_end_tensor_inputs=None,

        max_sequence_length=None,

    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(
                f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs
            for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_2 is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (
            not isinstance(prompt, str) and not isinstance(prompt, list)
        ):
            raise ValueError(
                f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
            )
        elif prompt_2 is not None and (
            not isinstance(prompt_2, str) and not isinstance(prompt_2, list)
        ):
            raise ValueError(
                f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}"
            )

        if prompt_embeds is not None and pooled_prompt_embeds is None:
            raise ValueError(
                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
            )

        if max_sequence_length is not None and max_sequence_length > 512:
            raise ValueError(
                f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}"
            )

    # Copied from diffusers.pipelines.flux.pipeline_flux._prepare_latent_image_ids
    @staticmethod
    def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
        latent_image_ids = torch.zeros(height // 2, width // 2, 3)
        latent_image_ids[..., 1] = (
            latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
        )
        latent_image_ids[..., 2] = (
            latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
        )

        (
            latent_image_id_height,
            latent_image_id_width,
            latent_image_id_channels,
        ) = latent_image_ids.shape

        latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
        latent_image_ids = latent_image_ids.reshape(
            batch_size,
            latent_image_id_height * latent_image_id_width,
            latent_image_id_channels,
        )

        return latent_image_ids.to(device=device, dtype=dtype)

    # Copied from diffusers.pipelines.flux.pipeline_flux._pack_latents
    @staticmethod
    def _pack_latents(latents, batch_size, num_channels_latents, height, width):
        latents = latents.view(
            batch_size, num_channels_latents, height // 2, 2, width // 2, 2
        )
        latents = latents.permute(0, 2, 4, 1, 3, 5)
        latents = latents.reshape(
            batch_size, (height // 2) * (width // 2), num_channels_latents * 4
        )

        return latents

    # Copied from diffusers.pipelines.flux.pipeline_flux._unpack_latents
    @staticmethod
    def _unpack_latents(latents, height, width, vae_scale_factor):
        batch_size, num_patches, channels = latents.shape

        height = height // vae_scale_factor
        width = width // vae_scale_factor

        latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
        latents = latents.permute(0, 3, 1, 4, 2, 5)

        latents = latents.reshape(
            batch_size, channels // (2 * 2), height * 2, width * 2
        )

        return latents

    # Copied from diffusers.pipelines.flux.pipeline_flux.prepare_latents
    def prepare_latents(

        self,

        batch_size,

        num_channels_latents,

        height,

        width,

        dtype,

        device,

        generator,

        latents=None,

    ):
        height = 2 * (int(height) // self.vae_scale_factor)
        width = 2 * (int(width) // self.vae_scale_factor)

        shape = (batch_size, num_channels_latents, height, width)

        if latents is not None:
            latent_image_ids = self._prepare_latent_image_ids(
                batch_size, height, width, device, dtype
            )
            return latents.to(device=device, dtype=dtype), latent_image_ids

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        latents = self._pack_latents(
            latents, batch_size, num_channels_latents, height, width
        )

        latent_image_ids = self._prepare_latent_image_ids(
            batch_size, height, width, device, dtype
        )

        return latents, latent_image_ids

    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
    def prepare_image(

        self,

        image,

        width,

        height,

        batch_size,

        num_images_per_prompt,

        device,

        dtype,

    ):
        if isinstance(image, torch.Tensor):
            pass
        else:
            image = self.image_processor.preprocess(image, height=height, width=width)

        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(device=device, dtype=dtype)

        return image

    def prepare_image_with_mask(

        self,

        image,

        mask,

        width,

        height,

        batch_size,

        num_images_per_prompt,

        device,

        dtype,

        do_classifier_free_guidance = False,

    ):
        # Prepare image
        if isinstance(image, torch.Tensor):
            pass
        else:
            image = self.image_processor.preprocess(image, height=height, width=width)

        image_batch_size = image.shape[0]
        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt
        image = image.repeat_interleave(repeat_by, dim=0)
        image = image.to(device=device, dtype=dtype)

        # Prepare mask
        if isinstance(mask, torch.Tensor):
            pass
        else:
            mask = self.mask_processor.preprocess(mask, height=height, width=width)
        mask = mask.repeat_interleave(repeat_by, dim=0)
        mask = mask.to(device=device, dtype=dtype)

        # Get masked image
        masked_image = image.clone()
        masked_image[(mask > 0.5).repeat(1, 3, 1, 1)] = -1

        # Encode to latents
        image_latents = self.vae.encode(masked_image.to(self.vae.dtype)).latent_dist.sample()
        image_latents = (
            image_latents - self.vae.config.shift_factor
        ) * self.vae.config.scaling_factor
        image_latents = image_latents.to(dtype)

        mask = torch.nn.functional.interpolate(
            mask, size=(height // self.vae_scale_factor * 2, width // self.vae_scale_factor * 2)
        )
        mask = 1 - mask

        control_image = torch.cat([image_latents, mask], dim=1)

        # Pack cond latents
        packed_control_image = self._pack_latents(
            control_image,
            batch_size * num_images_per_prompt,
            control_image.shape[1],
            control_image.shape[2],
            control_image.shape[3],
        )
        
        if do_classifier_free_guidance:
            packed_control_image = torch.cat([packed_control_image] * 2)

        return packed_control_image, height, width

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def joint_attention_kwargs(self):
        return self._joint_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(

        self,

        prompt: Union[str, List[str]] = None,

        prompt_2: Optional[Union[str, List[str]]] = None,

        height: Optional[int] = None,

        width: Optional[int] = None,

        num_inference_steps: int = 28,

        timesteps: List[int] = None,

        guidance_scale: float = 7.0,

        true_guidance_scale: float = 3.5 ,

        negative_prompt: Optional[Union[str, List[str]]] = None,

        negative_prompt_2: Optional[Union[str, List[str]]] = None,

        control_image: PipelineImageInput = None,

        control_mask: PipelineImageInput = None,

        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,

        num_images_per_prompt: Optional[int] = 1,

        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,

        latents: Optional[torch.FloatTensor] = None,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,

        output_type: Optional[str] = "pil",

        return_dict: bool = True,

        joint_attention_kwargs: Optional[Dict[str, Any]] = None,

        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,

        callback_on_step_end_tensor_inputs: List[str] = ["latents"],

        max_sequence_length: int = 512,

    ):
        r"""

        Function invoked when calling the pipeline for generation.



        Args:

            prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.

                instead.

            prompt_2 (`str` or `List[str]`, *optional*):

                The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is

                will be used instead

            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):

                The height in pixels of the generated image. This is set to 1024 by default for the best results.

            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):

                The width in pixels of the generated image. This is set to 1024 by default for the best results.

            num_inference_steps (`int`, *optional*, defaults to 50):

                The number of denoising steps. More denoising steps usually lead to a higher quality image at the

                expense of slower inference.

            timesteps (`List[int]`, *optional*):

                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument

                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is

                passed will be used. Must be in descending order.

            guidance_scale (`float`, *optional*, defaults to 7.0):

                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).

                `guidance_scale` is defined as `w` of equation 2. of [Imagen

                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >

                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,

                usually at the expense of lower image quality.

            num_images_per_prompt (`int`, *optional*, defaults to 1):

                The number of images to generate per prompt.

            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):

                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)

                to make generation deterministic.

            latents (`torch.FloatTensor`, *optional*):

                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image

                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents

                tensor will ge generated by sampling using the supplied random `generator`.

            prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.

                If not provided, pooled text embeddings will be generated from `prompt` input argument.

            output_type (`str`, *optional*, defaults to `"pil"`):

                The output format of the generate image. Choose between

                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.

            joint_attention_kwargs (`dict`, *optional*):

                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under

                `self.processor` in

                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

            callback_on_step_end (`Callable`, *optional*):

                A function that calls at the end of each denoising steps during the inference. The function is called

                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,

                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by

                `callback_on_step_end_tensor_inputs`.

            callback_on_step_end_tensor_inputs (`List`, *optional*):

                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list

                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the

                `._callback_tensor_inputs` attribute of your pipeline class.

            max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.



        Examples:



        Returns:

            [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`

            is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated

            images.

        """

        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            max_sequence_length=max_sequence_length,
        )

        self._guidance_scale = true_guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        dtype = self.transformer.dtype

        lora_scale = (
            self.joint_attention_kwargs.get("scale", None)
            if self.joint_attention_kwargs is not None
            else None
        )
        (            
            prompt_embeds,
            pooled_prompt_embeds,
            negative_prompt_embeds,
            negative_pooled_prompt_embeds,
            text_ids
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            do_classifier_free_guidance = self.do_classifier_free_guidance,
            negative_prompt = negative_prompt,
            negative_prompt_2 = negative_prompt_2,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )
        
        # 在 encode_prompt 之后
        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim = 0)
            pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim = 0)
            text_ids = torch.cat([text_ids, text_ids], dim = 0)

        # 3. Prepare control image
        num_channels_latents = self.transformer.config.in_channels // 4
        if isinstance(self.controlnet, FluxControlNetModel):
            control_image, height, width = self.prepare_image_with_mask(
                image=control_image,
                mask=control_mask,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                device=device,
                dtype=dtype,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
            )

        # 4. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels // 4
        latents, latent_image_ids = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )
        
        if self.do_classifier_free_guidance:
            latent_image_ids = torch.cat([latent_image_ids] * 2)

        # 5. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
        image_seq_len = latents.shape[1]
        mu = calculate_shift(
            image_seq_len,
            self.scheduler.config.base_image_seq_len,
            self.scheduler.config.max_image_seq_len,
            self.scheduler.config.base_shift,
            self.scheduler.config.max_shift,
        )
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            timesteps,
            sigmas,
            mu=mu,
        )

        num_warmup_steps = max(
            len(timesteps) - num_inference_steps * self.scheduler.order, 0
        )
        self._num_timesteps = len(timesteps)

        # 6. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue
                
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents

                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)

                # handle guidance
                if self.transformer.config.guidance_embeds:
                    guidance = torch.tensor([guidance_scale], device=device)
                    guidance = guidance.expand(latent_model_input.shape[0])
                else:
                    guidance = None

                # controlnet
                (
                    controlnet_block_samples,
                    controlnet_single_block_samples,
                ) = self.controlnet(
                    hidden_states=latent_model_input,
                    controlnet_cond=control_image,
                    conditioning_scale=controlnet_conditioning_scale,
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=pooled_prompt_embeds,
                    encoder_hidden_states=prompt_embeds,
                    txt_ids=text_ids,
                    img_ids=latent_image_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                )

                noise_pred = self.transformer(
                    hidden_states=latent_model_input,
                    # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=pooled_prompt_embeds,
                    encoder_hidden_states=prompt_embeds,
                    controlnet_block_samples=[
                        sample.to(dtype=self.transformer.dtype)
                        for sample in controlnet_block_samples
                    ],
                    controlnet_single_block_samples=[
                        sample.to(dtype=self.transformer.dtype)
                        for sample in controlnet_single_block_samples
                    ] if controlnet_single_block_samples is not None else controlnet_single_block_samples,
                    txt_ids=text_ids,
                    img_ids=latent_image_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                )[0]
                
                # 在生成循环中
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + true_guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(
                    noise_pred, t, latents, return_dict=False
                )[0]

                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                        latents = latents.to(latents_dtype)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
                ):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        if output_type == "latent":
            image = latents

        else:
            latents = self._unpack_latents(
                latents, height, width, self.vae_scale_factor
            )
            latents = (
                latents / self.vae.config.scaling_factor
            ) + self.vae.config.shift_factor
            latents = latents.to(self.vae.dtype)

            image = self.vae.decode(latents, return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return FluxPipelineOutput(images=image)