Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,104 Bytes
80e6c51 8c0ebd8 80e6c51 e752a32 80e6c51 8c0ebd8 80e6c51 e752a32 80e6c51 e752a32 80e6c51 8c0ebd8 80e6c51 e752a32 980e454 80e6c51 e752a32 80e6c51 8c0ebd8 80e6c51 8c0ebd8 80e6c51 8c0ebd8 80e6c51 8c0ebd8 80e6c51 8c0ebd8 80e6c51 8c0ebd8 80e6c51 980e454 80e6c51 980e454 80e6c51 980e454 80e6c51 e752a32 80e6c51 8c0ebd8 80e6c51 8c0ebd8 80e6c51 8c0ebd8 80e6c51 8c0ebd8 80e6c51 8c0ebd8 80e6c51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
from PIL import Image
import torch
import gradio as gr
import spaces
from transformers import (
AutoImageProcessor,
AutoModelForImageClassification,
)
from pathlib import Path
WD_MODEL_NAMES = ["p1atdev/wd-swinv2-tagger-v3-hf"]
WD_MODEL_NAME = WD_MODEL_NAMES[0]
wd_model = AutoModelForImageClassification.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
wd_model.to("cuda" if torch.cuda.is_available() else "cpu")
wd_processor = AutoImageProcessor.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
return (
[f"1{noun}"]
+ [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
+ [f"{maximum+1}+{noun}s"]
)
PEOPLE_TAGS = (
_people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
)
RATING_MAP = {
"sfw": "safe",
"general": "safe",
"sensitive": "sensitive",
"questionable": "nsfw",
"explicit": "explicit, nsfw",
}
DANBOORU_TO_E621_RATING_MAP = {
"sfw": "rating_safe",
"general": "rating_safe",
"safe": "rating_safe",
"sensitive": "rating_safe",
"nsfw": "rating_explicit",
"explicit, nsfw": "rating_explicit",
"explicit": "rating_explicit",
"rating:safe": "rating_safe",
"rating:general": "rating_safe",
"rating:sensitive": "rating_safe",
"rating:questionable, nsfw": "rating_explicit",
"rating:explicit, nsfw": "rating_explicit",
}
# https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
kaomojis = [
"0_0",
"(o)_(o)",
"+_+",
"+_-",
"._.",
"<o>_<o>",
"<|>_<|>",
"=_=",
">_<",
"3_3",
"6_9",
">_o",
"@_@",
"^_^",
"o_o",
"u_u",
"x_x",
"|_|",
"||_||",
]
def replace_underline(x: str):
return x.strip().replace("_", " ") if x not in kaomojis else x.strip()
def to_list(s):
return [x.strip() for x in s.split(",") if not s == ""]
def list_sub(a, b):
return [e for e in a if e not in b]
def list_uniq(l):
return sorted(set(l), key=l.index)
def load_dict_from_csv(filename):
dict = {}
if not Path(filename).exists():
if Path('./tagger/', filename).exists(): filename = str(Path('./tagger/', filename))
else: return dict
try:
with open(filename, 'r', encoding="utf-8") as f:
lines = f.readlines()
except Exception:
print(f"Failed to open dictionary file: {filename}")
return dict
for line in lines:
parts = line.strip().split(',')
dict[parts[0]] = parts[1]
return dict
anime_series_dict = load_dict_from_csv('character_series_dict.csv')
def character_list_to_series_list(character_list):
output_series_tag = []
series_tag = ""
series_dict = anime_series_dict
for tag in character_list:
series_tag = series_dict.get(tag, "")
if tag.endswith(")"):
tags = tag.split("(")
character_tag = "(".join(tags[:-1])
if character_tag.endswith(" "):
character_tag = character_tag[:-1]
series_tag = tags[-1].replace(")", "")
if series_tag:
output_series_tag.append(series_tag)
return output_series_tag
def select_random_character(series: str, character: str):
from random import seed, randrange
seed()
character_list = list(anime_series_dict.keys())
character = character_list[randrange(len(character_list) - 1)]
series = anime_series_dict.get(character.split(",")[0].strip(), "")
return series, character
def danbooru_to_e621(dtag, e621_dict):
def d_to_e(match, e621_dict):
dtag = match.group(0)
etag = e621_dict.get(replace_underline(dtag), "")
if etag:
return etag
else:
return dtag
import re
tag = re.sub(r'[\w ]+', lambda wrapper: d_to_e(wrapper, e621_dict), dtag, 2)
return tag
danbooru_to_e621_dict = load_dict_from_csv('danbooru_e621.csv')
def convert_danbooru_to_e621_prompt(input_prompt: str = "", prompt_type: str = "danbooru"):
if prompt_type == "danbooru": return input_prompt
tags = input_prompt.split(",") if input_prompt else []
people_tags: list[str] = []
other_tags: list[str] = []
rating_tags: list[str] = []
e621_dict = danbooru_to_e621_dict
for tag in tags:
tag = replace_underline(tag)
tag = danbooru_to_e621(tag, e621_dict)
if tag in PEOPLE_TAGS:
people_tags.append(tag)
elif tag in DANBOORU_TO_E621_RATING_MAP.keys():
rating_tags.append(DANBOORU_TO_E621_RATING_MAP.get(tag.replace(" ",""), ""))
else:
other_tags.append(tag)
rating_tags = sorted(set(rating_tags), key=rating_tags.index)
rating_tags = [rating_tags[0]] if rating_tags else []
rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags
output_prompt = ", ".join(people_tags + other_tags + rating_tags)
return output_prompt
def translate_prompt(prompt: str = ""):
def translate_to_english(prompt):
import httpcore
setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
from googletrans import Translator
translator = Translator()
try:
translated_prompt = translator.translate(prompt, src='auto', dest='en').text
return translated_prompt
except Exception as e:
print(e)
return prompt
def is_japanese(s):
import unicodedata
for ch in s:
name = unicodedata.name(ch, "")
if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
return True
return False
def to_list(s):
return [x.strip() for x in s.split(",")]
prompts = to_list(prompt)
outputs = []
for p in prompts:
p = translate_to_english(p) if is_japanese(p) else p
outputs.append(p)
return ", ".join(outputs)
def translate_prompt_to_ja(prompt: str = ""):
def translate_to_japanese(prompt):
import httpcore
setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
from googletrans import Translator
translator = Translator()
try:
translated_prompt = translator.translate(prompt, src='en', dest='ja').text
return translated_prompt
except Exception as e:
print(e)
return prompt
def is_japanese(s):
import unicodedata
for ch in s:
name = unicodedata.name(ch, "")
if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
return True
return False
def to_list(s):
return [x.strip() for x in s.split(",")]
prompts = to_list(prompt)
outputs = []
for p in prompts:
p = translate_to_japanese(p) if not is_japanese(p) else p
outputs.append(p)
return ", ".join(outputs)
def tags_to_ja(itag, dict):
def t_to_j(match, dict):
tag = match.group(0)
ja = dict.get(replace_underline(tag), "")
if ja:
return ja
else:
return tag
import re
tag = re.sub(r'[\w ]+', lambda wrapper: t_to_j(wrapper, dict), itag, 2)
return tag
def convert_tags_to_ja(input_prompt: str = ""):
tags = input_prompt.split(",") if input_prompt else []
out_tags = []
tags_to_ja_dict = load_dict_from_csv('all_tags_ja_ext.csv')
dict = tags_to_ja_dict
for tag in tags:
tag = replace_underline(tag)
tag = tags_to_ja(tag, dict)
out_tags.append(tag)
return ", ".join(out_tags)
enable_auto_recom_prompt = True
animagine_ps = to_list("masterpiece, best quality, very aesthetic, absurdres")
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
pony_ps = to_list("score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
pony_nps = to_list("source_pony, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
other_ps = to_list("anime artwork, anime style, studio anime, highly detailed, cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed")
other_nps = to_list("photo, deformed, black and white, realism, disfigured, low contrast, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly")
default_ps = to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres")
default_nps = to_list("score_6, score_5, score_4, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"):
global enable_auto_recom_prompt
prompts = to_list(prompt)
neg_prompts = to_list(neg_prompt)
prompts = list_sub(prompts, animagine_ps + pony_ps)
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps)
last_empty_p = [""] if not prompts and type != "None" else []
last_empty_np = [""] if not neg_prompts and type != "None" else []
if type == "Auto":
enable_auto_recom_prompt = True
else:
enable_auto_recom_prompt = False
if type == "Animagine":
prompts = prompts + animagine_ps
neg_prompts = neg_prompts + animagine_nps
elif type == "Pony":
prompts = prompts + pony_ps
neg_prompts = neg_prompts + pony_nps
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
return prompt, neg_prompt
def load_model_prompt_dict():
import json
dict = {}
path = 'model_dict.json' if Path('model_dict.json').exists() else './tagger/model_dict.json'
try:
with open('model_dict.json', encoding='utf-8') as f:
dict = json.load(f)
except Exception:
pass
return dict
model_prompt_dict = load_model_prompt_dict()
def insert_model_recom_prompt(prompt: str = "", neg_prompt: str = "", model_name: str = "None"):
if not model_name or not enable_auto_recom_prompt: return prompt, neg_prompt
prompts = to_list(prompt)
neg_prompts = to_list(neg_prompt)
prompts = list_sub(prompts, animagine_ps + pony_ps + other_ps)
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + other_nps)
last_empty_p = [""] if not prompts and type != "None" else []
last_empty_np = [""] if not neg_prompts and type != "None" else []
ps = []
nps = []
if model_name in model_prompt_dict.keys():
ps = to_list(model_prompt_dict[model_name]["prompt"])
nps = to_list(model_prompt_dict[model_name]["negative_prompt"])
else:
ps = default_ps
nps = default_nps
prompts = prompts + ps
neg_prompts = neg_prompts + nps
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
return prompt, neg_prompt
tag_group_dict = load_dict_from_csv('tag_group.csv')
def remove_specific_prompt(input_prompt: str = "", keep_tags: str = "all"):
def is_dressed(tag):
import re
p = re.compile(r'dress|cloth|uniform|costume|vest|sweater|coat|shirt|jacket|blazer|apron|leotard|hood|sleeve|skirt|shorts|pant|loafer|ribbon|necktie|bow|collar|glove|sock|shoe|boots|wear|emblem')
return p.search(tag)
def is_background(tag):
import re
p = re.compile(r'background|outline|light|sky|build|day|screen|tree|city')
return p.search(tag)
un_tags = ['solo']
group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
keep_group_dict = {
"body": ['groups', 'body_parts'],
"dress": ['groups', 'body_parts', 'attire'],
"all": group_list,
}
def is_necessary(tag, keep_tags, group_dict):
if keep_tags == "all":
return True
elif tag in un_tags or group_dict.get(tag, "") in explicit_group:
return False
elif keep_tags == "body" and is_dressed(tag):
return False
elif is_background(tag):
return False
else:
return True
if keep_tags == "all": return input_prompt
keep_group = keep_group_dict.get(keep_tags, keep_group_dict["body"])
explicit_group = list(set(group_list) ^ set(keep_group))
tags = input_prompt.split(",") if input_prompt else []
people_tags: list[str] = []
other_tags: list[str] = []
group_dict = tag_group_dict
for tag in tags:
tag = replace_underline(tag)
if tag in PEOPLE_TAGS:
people_tags.append(tag)
elif is_necessary(tag, keep_tags, group_dict):
other_tags.append(tag)
output_prompt = ", ".join(people_tags + other_tags)
return output_prompt
def sort_taglist(tags: list[str]):
if not tags: return []
character_tags: list[str] = []
series_tags: list[str] = []
people_tags: list[str] = []
group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
group_tags = {}
other_tags: list[str] = []
rating_tags: list[str] = []
group_dict = tag_group_dict
group_set = set(group_dict.keys())
character_set = set(anime_series_dict.keys())
series_set = set(anime_series_dict.values())
rating_set = set(DANBOORU_TO_E621_RATING_MAP.keys()) | set(DANBOORU_TO_E621_RATING_MAP.values())
for tag in tags:
tag = replace_underline(tag)
if tag in PEOPLE_TAGS:
people_tags.append(tag)
elif tag in rating_set:
rating_tags.append(tag)
elif tag in group_set:
elem = group_dict[tag]
group_tags[elem] = group_tags[elem] + [tag] if elem in group_tags else [tag]
elif tag in character_set:
character_tags.append(tag)
elif tag in series_set:
series_tags.append(tag)
else:
other_tags.append(tag)
output_group_tags: list[str] = []
for k in group_list:
output_group_tags.extend(group_tags.get(k, []))
rating_tags = [rating_tags[0]] if rating_tags else []
rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags
output_tags = character_tags + series_tags + people_tags + output_group_tags + other_tags + rating_tags
return output_tags
def sort_tags(tags: str):
if not tags: return ""
taglist: list[str] = []
for tag in tags.split(","):
taglist.append(tag.strip())
taglist = list(filter(lambda x: x != "", taglist))
return ", ".join(sort_taglist(taglist))
def postprocess_results(results: dict[str, float], general_threshold: float, character_threshold: float):
results = {
k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True)
}
rating = {}
character = {}
general = {}
for k, v in results.items():
if k.startswith("rating:"):
rating[k.replace("rating:", "")] = v
continue
elif k.startswith("character:"):
character[k.replace("character:", "")] = v
continue
general[k] = v
character = {k: v for k, v in character.items() if v >= character_threshold}
general = {k: v for k, v in general.items() if v >= general_threshold}
return rating, character, general
def gen_prompt(rating: list[str], character: list[str], general: list[str]):
people_tags: list[str] = []
other_tags: list[str] = []
rating_tag = RATING_MAP[rating[0]]
for tag in general:
if tag in PEOPLE_TAGS:
people_tags.append(tag)
else:
other_tags.append(tag)
all_tags = people_tags + other_tags
return ", ".join(all_tags)
@spaces.GPU()
def predict_tags(image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8):
inputs = wd_processor.preprocess(image, return_tensors="pt")
outputs = wd_model(**inputs.to(wd_model.device, wd_model.dtype))
logits = torch.sigmoid(outputs.logits[0]) # take the first logits
# get probabilities
results = {
wd_model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits)
}
# rating, character, general
rating, character, general = postprocess_results(
results, general_threshold, character_threshold
)
prompt = gen_prompt(
list(rating.keys()), list(character.keys()), list(general.keys())
)
output_series_tag = ""
output_series_list = character_list_to_series_list(character.keys())
if output_series_list:
output_series_tag = output_series_list[0]
else:
output_series_tag = ""
return output_series_tag, ", ".join(character.keys()), prompt, gr.update(interactive=True)
def predict_tags_wd(image: Image.Image, input_tags: str, algo: list[str], general_threshold: float = 0.3,
character_threshold: float = 0.8, input_series: str = "", input_character: str = ""):
if not "Use WD Tagger" in algo and len(algo) != 0:
return input_series, input_character, input_tags, gr.update(interactive=True)
return predict_tags(image, general_threshold, character_threshold)
def compose_prompt_to_copy(character: str, series: str, general: str):
characters = character.split(",") if character else []
serieses = series.split(",") if series else []
generals = general.split(",") if general else []
tags = characters + serieses + generals
cprompt = ",".join(tags) if tags else ""
return cprompt
|