File size: 19,104 Bytes
80e6c51
 
 
8c0ebd8
80e6c51
 
 
 
e752a32
80e6c51
8c0ebd8
80e6c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e752a32
80e6c51
 
 
 
 
 
e752a32
 
80e6c51
 
 
 
 
 
 
 
 
 
 
 
 
8c0ebd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80e6c51
 
 
 
 
 
 
 
 
 
 
 
 
 
e752a32
 
 
980e454
 
 
 
 
 
80e6c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e752a32
 
80e6c51
 
 
 
 
 
 
 
 
8c0ebd8
80e6c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c0ebd8
80e6c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c0ebd8
80e6c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c0ebd8
80e6c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c0ebd8
80e6c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c0ebd8
80e6c51
 
 
 
 
 
 
 
 
980e454
80e6c51
980e454
 
80e6c51
 
980e454
80e6c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e752a32
80e6c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c0ebd8
80e6c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c0ebd8
80e6c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c0ebd8
80e6c51
 
8c0ebd8
 
80e6c51
8c0ebd8
80e6c51
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
from PIL import Image
import torch
import gradio as gr
import spaces
from transformers import (
    AutoImageProcessor,
    AutoModelForImageClassification,
)
from pathlib import Path


WD_MODEL_NAMES = ["p1atdev/wd-swinv2-tagger-v3-hf"]
WD_MODEL_NAME = WD_MODEL_NAMES[0]

wd_model = AutoModelForImageClassification.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
wd_model.to("cuda" if torch.cuda.is_available() else "cpu")
wd_processor = AutoImageProcessor.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)


def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
    return (
        [f"1{noun}"]
        + [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
        + [f"{maximum+1}+{noun}s"]
    )


PEOPLE_TAGS = (
    _people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
)


RATING_MAP = {
    "sfw": "safe",
    "general": "safe",
    "sensitive": "sensitive",
    "questionable": "nsfw",
    "explicit": "explicit, nsfw",
}
DANBOORU_TO_E621_RATING_MAP = {
    "sfw": "rating_safe",
    "general": "rating_safe",
    "safe": "rating_safe",
    "sensitive": "rating_safe",
    "nsfw": "rating_explicit",
    "explicit, nsfw": "rating_explicit",
    "explicit": "rating_explicit",
    "rating:safe": "rating_safe",
    "rating:general": "rating_safe",
    "rating:sensitive": "rating_safe",
    "rating:questionable, nsfw": "rating_explicit",
    "rating:explicit, nsfw": "rating_explicit",
}


# https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
kaomojis = [
    "0_0",
    "(o)_(o)",
    "+_+",
    "+_-",
    "._.",
    "<o>_<o>",
    "<|>_<|>",
    "=_=",
    ">_<",
    "3_3",
    "6_9",
    ">_o",
    "@_@",
    "^_^",
    "o_o",
    "u_u",
    "x_x",
    "|_|",
    "||_||",
]


def replace_underline(x: str):
    return x.strip().replace("_", " ") if x not in kaomojis else x.strip()


def to_list(s):
    return [x.strip() for x in s.split(",") if not s == ""]


def list_sub(a, b):
    return [e for e in a if e not in b]


def list_uniq(l):
    return sorted(set(l), key=l.index)


def load_dict_from_csv(filename):
    dict = {}
    if not Path(filename).exists():
        if Path('./tagger/', filename).exists(): filename = str(Path('./tagger/', filename))
        else: return dict
    try:
        with open(filename, 'r', encoding="utf-8") as f:
            lines = f.readlines()
    except Exception:
        print(f"Failed to open dictionary file: {filename}")
        return dict
    for line in lines:
        parts = line.strip().split(',')
        dict[parts[0]] = parts[1]
    return dict


anime_series_dict = load_dict_from_csv('character_series_dict.csv')


def character_list_to_series_list(character_list):
    output_series_tag = []
    series_tag = ""
    series_dict = anime_series_dict
    for tag in character_list:
        series_tag = series_dict.get(tag, "")
        if tag.endswith(")"):
            tags = tag.split("(")
            character_tag = "(".join(tags[:-1])
            if character_tag.endswith(" "):
                character_tag = character_tag[:-1]
            series_tag = tags[-1].replace(")", "")

    if series_tag:
        output_series_tag.append(series_tag)

    return output_series_tag


def select_random_character(series: str, character: str):
    from random import seed, randrange
    seed()
    character_list = list(anime_series_dict.keys())
    character = character_list[randrange(len(character_list) - 1)]
    series = anime_series_dict.get(character.split(",")[0].strip(), "")
    return series, character


def danbooru_to_e621(dtag, e621_dict):
    def d_to_e(match, e621_dict):
        dtag = match.group(0)
        etag = e621_dict.get(replace_underline(dtag), "")
        if etag:
            return etag
        else:
            return dtag
    
    import re
    tag = re.sub(r'[\w ]+', lambda wrapper: d_to_e(wrapper, e621_dict), dtag, 2)
    return tag


danbooru_to_e621_dict = load_dict_from_csv('danbooru_e621.csv')


def convert_danbooru_to_e621_prompt(input_prompt: str = "", prompt_type: str = "danbooru"):
    if prompt_type == "danbooru": return input_prompt
    tags = input_prompt.split(",") if input_prompt else []
    people_tags: list[str] = []
    other_tags: list[str] = []
    rating_tags: list[str] = []

    e621_dict = danbooru_to_e621_dict
    for tag in tags:
        tag = replace_underline(tag)
        tag = danbooru_to_e621(tag, e621_dict)
        if tag in PEOPLE_TAGS:        
            people_tags.append(tag)
        elif tag in DANBOORU_TO_E621_RATING_MAP.keys():
            rating_tags.append(DANBOORU_TO_E621_RATING_MAP.get(tag.replace(" ",""), ""))            
        else:
            other_tags.append(tag)

    rating_tags = sorted(set(rating_tags), key=rating_tags.index)
    rating_tags = [rating_tags[0]] if rating_tags else []
    rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags

    output_prompt = ", ".join(people_tags + other_tags + rating_tags)
    
    return output_prompt


def translate_prompt(prompt: str = ""):
    def translate_to_english(prompt):
        import httpcore
        setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
        from googletrans import Translator
        translator = Translator()
        try:
            translated_prompt = translator.translate(prompt, src='auto', dest='en').text
            return translated_prompt
        except Exception as e:
            print(e)
            return prompt

    def is_japanese(s):
        import unicodedata
        for ch in s:
            name = unicodedata.name(ch, "") 
            if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
                return True
        return False

    def to_list(s):
        return [x.strip() for x in s.split(",")]
    
    prompts = to_list(prompt)
    outputs = []
    for p in prompts:
        p = translate_to_english(p) if is_japanese(p) else p
        outputs.append(p)

    return ", ".join(outputs)


def translate_prompt_to_ja(prompt: str = ""):
    def translate_to_japanese(prompt):
        import httpcore
        setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
        from googletrans import Translator
        translator = Translator()
        try:
            translated_prompt = translator.translate(prompt, src='en', dest='ja').text
            return translated_prompt
        except Exception as e:
            print(e)
            return prompt

    def is_japanese(s):
        import unicodedata
        for ch in s:
            name = unicodedata.name(ch, "") 
            if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
                return True
        return False

    def to_list(s):
        return [x.strip() for x in s.split(",")]
    
    prompts = to_list(prompt)
    outputs = []
    for p in prompts:
        p = translate_to_japanese(p) if not is_japanese(p) else p
        outputs.append(p)

    return ", ".join(outputs)


def tags_to_ja(itag, dict):
    def t_to_j(match, dict):
        tag = match.group(0)
        ja = dict.get(replace_underline(tag), "")
        if ja:
            return ja
        else:
            return tag
    
    import re
    tag = re.sub(r'[\w ]+', lambda wrapper: t_to_j(wrapper, dict), itag, 2)

    return tag


def convert_tags_to_ja(input_prompt: str = ""):
    tags = input_prompt.split(",") if input_prompt else []
    out_tags = []

    tags_to_ja_dict = load_dict_from_csv('all_tags_ja_ext.csv')
    dict = tags_to_ja_dict
    for tag in tags:
        tag = replace_underline(tag)
        tag = tags_to_ja(tag, dict)
        out_tags.append(tag)
    
    return ", ".join(out_tags)


enable_auto_recom_prompt = True


animagine_ps = to_list("masterpiece, best quality, very aesthetic, absurdres")
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
pony_ps = to_list("score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
pony_nps = to_list("source_pony, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
other_ps = to_list("anime artwork, anime style, studio anime, highly detailed, cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed")
other_nps = to_list("photo, deformed, black and white, realism, disfigured, low contrast, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly")
default_ps = to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres")
default_nps = to_list("score_6, score_5, score_4, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"):
    global enable_auto_recom_prompt
    prompts = to_list(prompt)
    neg_prompts = to_list(neg_prompt)

    prompts = list_sub(prompts, animagine_ps + pony_ps)
    neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps)

    last_empty_p = [""] if not prompts and type != "None" else []
    last_empty_np = [""] if not neg_prompts and type != "None" else []

    if type == "Auto":
        enable_auto_recom_prompt = True
    else:
        enable_auto_recom_prompt = False
        if type == "Animagine":
            prompts = prompts + animagine_ps
            neg_prompts = neg_prompts + animagine_nps
        elif type == "Pony":
            prompts = prompts + pony_ps
            neg_prompts = neg_prompts + pony_nps

    prompt = ", ".join(list_uniq(prompts) + last_empty_p)
    neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)

    return prompt, neg_prompt


def load_model_prompt_dict():
    import json
    dict = {}
    path = 'model_dict.json' if Path('model_dict.json').exists() else './tagger/model_dict.json'
    try:
        with open('model_dict.json', encoding='utf-8') as f:
            dict = json.load(f)
    except Exception:
        pass
    return dict


model_prompt_dict = load_model_prompt_dict()


def insert_model_recom_prompt(prompt: str = "", neg_prompt: str = "", model_name: str = "None"):
    if not model_name or not enable_auto_recom_prompt: return prompt, neg_prompt
    prompts = to_list(prompt)
    neg_prompts = to_list(neg_prompt)
    prompts = list_sub(prompts, animagine_ps + pony_ps + other_ps)
    neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + other_nps)
    last_empty_p = [""] if not prompts and type != "None" else []
    last_empty_np = [""] if not neg_prompts and type != "None" else []
    ps = []
    nps = []
    if model_name in model_prompt_dict.keys(): 
        ps = to_list(model_prompt_dict[model_name]["prompt"])
        nps = to_list(model_prompt_dict[model_name]["negative_prompt"])
    else:
        ps = default_ps
        nps = default_nps
    prompts = prompts + ps
    neg_prompts = neg_prompts + nps
    prompt = ", ".join(list_uniq(prompts) + last_empty_p)
    neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
    return prompt, neg_prompt


tag_group_dict = load_dict_from_csv('tag_group.csv')


def remove_specific_prompt(input_prompt: str = "", keep_tags: str = "all"):
    def is_dressed(tag):
        import re
        p = re.compile(r'dress|cloth|uniform|costume|vest|sweater|coat|shirt|jacket|blazer|apron|leotard|hood|sleeve|skirt|shorts|pant|loafer|ribbon|necktie|bow|collar|glove|sock|shoe|boots|wear|emblem')
        return p.search(tag)

    def is_background(tag):
        import re
        p = re.compile(r'background|outline|light|sky|build|day|screen|tree|city')
        return p.search(tag)

    un_tags = ['solo']
    group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
    keep_group_dict = {
        "body": ['groups', 'body_parts'],
        "dress": ['groups', 'body_parts', 'attire'],
        "all": group_list,
    }

    def is_necessary(tag, keep_tags, group_dict):
        if keep_tags == "all":
            return True
        elif tag in un_tags or group_dict.get(tag, "") in explicit_group:
            return False
        elif keep_tags == "body" and is_dressed(tag):
            return False
        elif is_background(tag):
            return False
        else:
            return True
    
    if keep_tags == "all": return input_prompt
    keep_group = keep_group_dict.get(keep_tags, keep_group_dict["body"])
    explicit_group = list(set(group_list) ^ set(keep_group))

    tags = input_prompt.split(",") if input_prompt else []
    people_tags: list[str] = []
    other_tags: list[str] = []

    group_dict = tag_group_dict
    for tag in tags:
        tag = replace_underline(tag)
        if tag in PEOPLE_TAGS:
            people_tags.append(tag)
        elif is_necessary(tag, keep_tags, group_dict):
            other_tags.append(tag)

    output_prompt = ", ".join(people_tags + other_tags)
    
    return output_prompt


def sort_taglist(tags: list[str]):
    if not tags: return []
    character_tags: list[str] = []
    series_tags: list[str] = []
    people_tags: list[str] = []
    group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
    group_tags = {}
    other_tags: list[str] = []
    rating_tags: list[str] = []

    group_dict = tag_group_dict
    group_set = set(group_dict.keys())
    character_set = set(anime_series_dict.keys())
    series_set = set(anime_series_dict.values())
    rating_set = set(DANBOORU_TO_E621_RATING_MAP.keys()) | set(DANBOORU_TO_E621_RATING_MAP.values())

    for tag in tags:
        tag = replace_underline(tag)
        if tag in PEOPLE_TAGS:
            people_tags.append(tag)
        elif tag in rating_set:
            rating_tags.append(tag)
        elif tag in group_set:
            elem = group_dict[tag]
            group_tags[elem] = group_tags[elem] + [tag] if elem in group_tags else [tag]
        elif tag in character_set:
            character_tags.append(tag)
        elif tag in series_set:
            series_tags.append(tag)
        else:
            other_tags.append(tag)

    output_group_tags: list[str] = []
    for k in group_list:
        output_group_tags.extend(group_tags.get(k, []))

    rating_tags = [rating_tags[0]] if rating_tags else []
    rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags

    output_tags = character_tags + series_tags + people_tags + output_group_tags + other_tags + rating_tags
    
    return output_tags


def sort_tags(tags: str):
    if not tags: return ""
    taglist: list[str] = []
    for tag in tags.split(","):
        taglist.append(tag.strip())
    taglist = list(filter(lambda x: x != "", taglist))
    return ", ".join(sort_taglist(taglist))


def postprocess_results(results: dict[str, float], general_threshold: float, character_threshold: float):
    results = {
        k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True)
    }

    rating = {}
    character = {}
    general = {}

    for k, v in results.items():
        if k.startswith("rating:"):
            rating[k.replace("rating:", "")] = v
            continue
        elif k.startswith("character:"):
            character[k.replace("character:", "")] = v
            continue

        general[k] = v

    character = {k: v for k, v in character.items() if v >= character_threshold}
    general = {k: v for k, v in general.items() if v >= general_threshold}

    return rating, character, general


def gen_prompt(rating: list[str], character: list[str], general: list[str]):
    people_tags: list[str] = []
    other_tags: list[str] = []
    rating_tag = RATING_MAP[rating[0]]

    for tag in general:
        if tag in PEOPLE_TAGS:
            people_tags.append(tag)
        else:
            other_tags.append(tag)

    all_tags = people_tags + other_tags

    return ", ".join(all_tags)


@spaces.GPU()
def predict_tags(image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8):
    inputs = wd_processor.preprocess(image, return_tensors="pt")

    outputs = wd_model(**inputs.to(wd_model.device, wd_model.dtype))
    logits = torch.sigmoid(outputs.logits[0])  # take the first logits

    # get probabilities
    results = {
        wd_model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits)
    }
    # rating, character, general
    rating, character, general = postprocess_results(
        results, general_threshold, character_threshold
    )
    prompt = gen_prompt(
        list(rating.keys()), list(character.keys()), list(general.keys())
    )
    output_series_tag = ""
    output_series_list = character_list_to_series_list(character.keys())
    if output_series_list:
        output_series_tag = output_series_list[0]
    else:
        output_series_tag = ""
    return output_series_tag, ", ".join(character.keys()), prompt, gr.update(interactive=True)


def predict_tags_wd(image: Image.Image, input_tags: str, algo: list[str], general_threshold: float = 0.3,

                     character_threshold: float = 0.8, input_series: str = "", input_character: str = ""):
    if not "Use WD Tagger" in algo and len(algo) != 0:
        return input_series, input_character, input_tags, gr.update(interactive=True)
    return predict_tags(image, general_threshold, character_threshold)


def compose_prompt_to_copy(character: str, series: str, general: str):
    characters = character.split(",") if character else []
    serieses = series.split(",") if series else []
    generals = general.split(",") if general else []
    tags = characters + serieses + generals
    cprompt = ",".join(tags) if tags else ""
    return cprompt