File size: 9,179 Bytes
31934a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a49af7
31934a1
83c14cb
ea1aefb
 
 
 
 
83c14cb
 
 
31934a1
 
 
 
 
 
 
 
 
4058ef5
31934a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa9c9a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright 2023 ByteDance and/or its affiliates.
#
# Copyright (2023) MagicAnimate Authors
#
# ByteDance, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from ByteDance or
# its affiliates is strictly prohibited.
import datetime
import inspect
import os
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
from collections import OrderedDict

import torch

from diffusers import AutoencoderKL, DDIMScheduler

from transformers import CLIPTextModel, CLIPTokenizer

from magicanimate.models.unet_controlnet import UNet3DConditionModel
from magicanimate.models.controlnet import ControlNetModel
from magicanimate.models.appearance_encoder import AppearanceEncoderModel
from magicanimate.models.mutual_self_attention import ReferenceAttentionControl
from magicanimate.pipelines.pipeline_animation import AnimationPipeline
from magicanimate.utils.util import save_videos_grid
from accelerate.utils import set_seed

from magicanimate.utils.videoreader import VideoReader

from einops import rearrange

device = "cuda" if torch.cuda.is_available() else "cpu"

class MagicAnimate():
    def __init__(self, config="configs/prompts/animation.yaml") -> None:
        print("Initializing MagicAnimate Pipeline...")
        *_, func_args = inspect.getargvalues(inspect.currentframe())
        func_args = dict(func_args)
        
        config  = OmegaConf.load(config)
        
        inference_config = OmegaConf.load(config.inference_config)
            
        motion_module = config.motion_module
       
        ### >>> create animation pipeline >>> ###
        tokenizer = CLIPTokenizer.from_pretrained(config.pretrained_model_path, subfolder="tokenizer")
        text_encoder = CLIPTextModel.from_pretrained(config.pretrained_model_path, subfolder="text_encoder")
        if config.pretrained_unet_path:
            unet = UNet3DConditionModel.from_pretrained_2d(config.pretrained_unet_path, unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
        else:
            unet = UNet3DConditionModel.from_pretrained_2d(config.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
        self.appearance_encoder = AppearanceEncoderModel.from_pretrained(config.pretrained_appearance_encoder_path, subfolder="appearance_encoder").to(device)
        self.reference_control_writer = ReferenceAttentionControl(self.appearance_encoder, do_classifier_free_guidance=True, mode='write', fusion_blocks=config.fusion_blocks)
        self.reference_control_reader = ReferenceAttentionControl(unet, do_classifier_free_guidance=True, mode='read', fusion_blocks=config.fusion_blocks)
        if config.pretrained_vae_path is not None:
            vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path)
        else:
            vae = AutoencoderKL.from_pretrained(config.pretrained_model_path, subfolder="vae")
        ### Load controlnet
        controlnet = ControlNetModel.from_pretrained(config.pretrained_controlnet_path)

        if device == "cuda":
            vae.to(torch.float16)
            unet.to(torch.float16)
            text_encoder.to(torch.float16)
            controlnet.to(torch.float16)
            self.appearance_encoder.to(torch.float16)
            unet.enable_xformers_memory_efficient_attention()
            self.appearance_encoder.enable_xformers_memory_efficient_attention()
            controlnet.enable_xformers_memory_efficient_attention()

        self.pipeline = AnimationPipeline(
            vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet,
            scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)),
            # NOTE: UniPCMultistepScheduler
        ).to(device)

        # 1. unet ckpt
        # 1.1 motion module
        motion_module_state_dict = torch.load(motion_module, map_location="cpu", weights_only=True)
        if "global_step" in motion_module_state_dict: func_args.update({"global_step": motion_module_state_dict["global_step"]})
        motion_module_state_dict = motion_module_state_dict['state_dict'] if 'state_dict' in motion_module_state_dict else motion_module_state_dict
        try:
            # extra steps for self-trained models
            state_dict = OrderedDict()
            for key in motion_module_state_dict.keys():
                if key.startswith("module."):
                    _key = key.split("module.")[-1]
                    state_dict[_key] = motion_module_state_dict[key]
                else:
                    state_dict[key] = motion_module_state_dict[key]
            motion_module_state_dict = state_dict
            del state_dict
            missing, unexpected = self.pipeline.unet.load_state_dict(motion_module_state_dict, strict=False)
            assert len(unexpected) == 0
        except:
            _tmp_ = OrderedDict()
            for key in motion_module_state_dict.keys():
                if "motion_modules" in key:
                    if key.startswith("unet."):
                        _key = key.split('unet.')[-1]
                        _tmp_[_key] = motion_module_state_dict[key]
                    else:
                        _tmp_[key] = motion_module_state_dict[key]
            missing, unexpected = unet.load_state_dict(_tmp_, strict=False)
            assert len(unexpected) == 0
            del _tmp_
        del motion_module_state_dict

        self.pipeline.to(device)
        self.L = config.L
        
        print("Initialization Done!")
        
    def __call__(self, source_image, motion_sequence, random_seed, step, guidance_scale, size=512):
            prompt = n_prompt = ""
            random_seed = int(random_seed)
            step = int(step)
            guidance_scale = float(guidance_scale)
            samples_per_video = []
            # manually set random seed for reproduction
            if random_seed != -1: 
                torch.manual_seed(random_seed)
                set_seed(random_seed)
            else:
                torch.seed()

            if motion_sequence.endswith('.mp4'):
                control = VideoReader(motion_sequence).read()
                if control[0].shape[0] != size:
                    control = [np.array(Image.fromarray(c).resize((size, size))) for c in control]
                control = np.array(control)
            
            if source_image.shape[0] != size:
                source_image = np.array(Image.fromarray(source_image).resize((size, size)))
            H, W, C = source_image.shape
            
            init_latents = None
            original_length = control.shape[0]
            if control.shape[0] % self.L > 0:
                control = np.pad(control, ((0, self.L-control.shape[0] % self.L), (0, 0), (0, 0), (0, 0)), mode='edge')
            generator = torch.Generator(device=torch.device(device))
            generator.manual_seed(torch.initial_seed())
            sample = self.pipeline(
                prompt,
                negative_prompt         = n_prompt,
                num_inference_steps     = step,
                guidance_scale          = guidance_scale,
                width                   = W,
                height                  = H,
                video_length            = len(control),
                controlnet_condition    = control,
                init_latents            = init_latents,
                generator               = generator,
                appearance_encoder       = self.appearance_encoder, 
                reference_control_writer = self.reference_control_writer,
                reference_control_reader = self.reference_control_reader,
                source_image             = source_image,
            ).videos

            source_images = np.array([source_image] * original_length)
            source_images = rearrange(torch.from_numpy(source_images), "t h w c -> 1 c t h w") / 255.0
            samples_per_video.append(source_images)
            
            control = control / 255.0
            control = rearrange(control, "t h w c -> 1 c t h w")
            control = torch.from_numpy(control)
            samples_per_video.append(control[:, :, :original_length])

            samples_per_video.append(sample[:, :, :original_length])

            samples_per_video = torch.cat(samples_per_video)

            time_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
            savedir = f"demo/outputs"
            animation_path = f"{savedir}/{time_str}.mp4"

            os.makedirs(savedir, exist_ok=True)
            save_videos_grid(samples_per_video, animation_path)
            
            return animation_path