JoPmt commited on
Commit
1676820
1 Parent(s): 5a95adb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -11
app.py CHANGED
@@ -8,26 +8,23 @@ from accelerate import Accelerator
8
  from transformers import pipeline
9
  from diffusers.utils import load_image
10
  from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline
 
11
 
12
  accelerator = Accelerator(cpu=True)
13
- MAX_SEED = np.iinfo(np.int32).max
14
- depth_estimator = accelerator.prepare(pipeline("depth-estimation", model="Intel/dpt-hybrid-midas"))
15
  pipe_prior = accelerator.prepare(KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float32))
16
  pipe_prior = accelerator.prepare(pipe_prior.to("cpu"))
17
  pipe = accelerator.prepare(KandinskyV22ControlnetPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float32))
18
  pipe = accelerator.prepare(pipe.to("cpu"))
 
19
 
20
- generator = torch.Generator("cpu").manual_seed(random.randint(1, MAX_SEED))
21
-
22
- def make_hint(image, depth_estimator):
23
- image = depth_estimator(image)['depth']
24
- image = load_image(image)
25
- image.save('./dpt.png', 'PNG')
26
  image = np.array(image)
27
  image = image[:, :, None]
28
  image = np.concatenate([image, image, image], axis=2)
29
  detected_map = torch.from_numpy(image).float() / 255.0
30
- hint = detected_map.permute(1, 2, 0)
31
  return hint
32
 
33
  def plex(goof,prompt):
@@ -35,8 +32,7 @@ def plex(goof,prompt):
35
  goof = load_image(goof)
36
  goof = goof.convert("RGB")
37
  goof.save('./gf.png', 'PNG')
38
-
39
- hint = make_hint(goof, depth_estimator).unsqueeze(0).to("cpu")
40
  negative_prior_prompt = "lowres,text,bad quality,jpeg artifacts,ugly,bad face,extra fingers,blurry,bad anatomy,extra limbs,fused fingers,long neck,watermark,signature"
41
  image_emb, zero_image_emb = pipe_prior(prompt=prompt, negative_prompt=negative_prior_prompt, num_inference_steps=5,generator=generator).to_tuple()
42
 
 
8
  from transformers import pipeline
9
  from diffusers.utils import load_image
10
  from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline
11
+ from gradio_client import Client
12
 
13
  accelerator = Accelerator(cpu=True)
 
 
14
  pipe_prior = accelerator.prepare(KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float32))
15
  pipe_prior = accelerator.prepare(pipe_prior.to("cpu"))
16
  pipe = accelerator.prepare(KandinskyV22ControlnetPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float32))
17
  pipe = accelerator.prepare(pipe.to("cpu"))
18
+ generator = torch.Generator("cpu").manual_seed(random.randint(1, 4867346))
19
 
20
+ def make_hint(image):
21
+ client = Client("https://nielsr-dpt-depth-estimation.hf.space/")
22
+ image = client.predict(image,api_name="/predict")
 
 
 
23
  image = np.array(image)
24
  image = image[:, :, None]
25
  image = np.concatenate([image, image, image], axis=2)
26
  detected_map = torch.from_numpy(image).float() / 255.0
27
+ hint = detected_map.permute(2, 0, 1)
28
  return hint
29
 
30
  def plex(goof,prompt):
 
32
  goof = load_image(goof)
33
  goof = goof.convert("RGB")
34
  goof.save('./gf.png', 'PNG')
35
+ hint = make_hint(goof).unsqueeze(0).to("cpu")
 
36
  negative_prior_prompt = "lowres,text,bad quality,jpeg artifacts,ugly,bad face,extra fingers,blurry,bad anatomy,extra limbs,fused fingers,long neck,watermark,signature"
37
  image_emb, zero_image_emb = pipe_prior(prompt=prompt, negative_prompt=negative_prior_prompt, num_inference_steps=5,generator=generator).to_tuple()
38