Spaces:
Runtime error
Runtime error
update script
Browse files- README.md +5 -5
- app.py +416 -0
- block_latency_demo.json +759 -0
- requirements.txt +6 -0
- samples/mobilenetv3small_0.json +0 -0
- samples/mobilenetv3small_0.onnx +3 -0
- samples/mobilenetv3small_0.pb +3 -0
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title: Latency Prediction
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.0.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
1 |
---
|
2 |
+
title: Latency Prediction by nn-Meter
|
3 |
+
emoji: π
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.0.20
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
app.py
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import gradio as gr
|
3 |
+
from nn_meter import load_latency_predictor
|
4 |
+
|
5 |
+
|
6 |
+
cortexA76cpu_predictor = load_latency_predictor("cortexA76cpu_tflite21")
|
7 |
+
adreno640gpu_predictor = load_latency_predictor("adreno640gpu_tflite21")
|
8 |
+
adreno630gpu = load_latency_predictor("adreno630gpu_tflite21")
|
9 |
+
myriadvpu_predictor = load_latency_predictor("myriadvpu_openvino2019r2")
|
10 |
+
predictor_map = {
|
11 |
+
"cortexA76cpu_tflite21": cortexA76cpu_predictor,
|
12 |
+
"adreno640gpu_tflite21": adreno640gpu_predictor,
|
13 |
+
"adreno630gpu_tflite21": adreno630gpu,
|
14 |
+
"myriadvpu_openvino2019r2": myriadvpu_predictor
|
15 |
+
}
|
16 |
+
|
17 |
+
feature_for_kernel = {
|
18 |
+
# remove the last two float
|
19 |
+
"conv": ["HW", "CIN", "COUT", "KERNEL_SIZE", "STRIDES"],
|
20 |
+
"dwconv": ["HW", "CIN", "COUT", "KERNEL_SIZE", "STRIDES"],
|
21 |
+
"fc": ["CIN", "COUT"],
|
22 |
+
# support up to 4 cin, if less than 4, the latter cin will be set to 0
|
23 |
+
"concat": ["HW", "CIN1", "CIN2", "CIN3", "CIN4"],
|
24 |
+
#
|
25 |
+
"maxpool": ["HW", "CIN", "COUT", "KERNEL_SIZE", "POOL_STRIDES"],
|
26 |
+
"avgpool": ["HW", "CIN", "COUT", "KERNEL_SIZE", "POOL_STRIDES"],
|
27 |
+
"split": ["HW", "CIN"],
|
28 |
+
"channelshuffle": ["HW", "CIN"],
|
29 |
+
"se": ["HW", "CIN"],
|
30 |
+
"global-avgpool": ["HW", "CIN"],
|
31 |
+
"bnrelu": ["HW", "CIN"],
|
32 |
+
"bn": ["HW", "CIN"],
|
33 |
+
"hswish": ["HW", "CIN"],
|
34 |
+
"relu": ["HW", "CIN"],
|
35 |
+
"addrelu": ["HW", "CIN1", "CIN2"],
|
36 |
+
"add": ["HW", "CIN1", "CIN2"],
|
37 |
+
}
|
38 |
+
|
39 |
+
def get_type(str):
|
40 |
+
operate_type = str.split("-")[0]
|
41 |
+
if operate_type == 'global' or operate_type == 'gap':
|
42 |
+
operate_type = 'global-avgpool'
|
43 |
+
return operate_type
|
44 |
+
def get_configuration(operate_type, value_arr):
|
45 |
+
feature_arr = feature_for_kernel[operate_type]
|
46 |
+
if operate_type == 'concat':
|
47 |
+
configuration_arr = []
|
48 |
+
for i in range(len(feature_arr)):
|
49 |
+
if value_arr[i] != 0:
|
50 |
+
configuration_arr.append(feature_arr[i]+"="+str(value_arr[i]))
|
51 |
+
else:
|
52 |
+
break
|
53 |
+
else:
|
54 |
+
configuration_arr = [feature_arr[i]+"="+str(value_arr[i]) for i in range(min(len(feature_arr),len(value_arr)))]
|
55 |
+
return ', '.join(configuration_arr)
|
56 |
+
|
57 |
+
|
58 |
+
def data_process(data):
|
59 |
+
new_data = []
|
60 |
+
for item in data:
|
61 |
+
operate_type = get_type(item[1])
|
62 |
+
new_item = {
|
63 |
+
"order": item[0],
|
64 |
+
"type": operate_type,
|
65 |
+
"configuration": get_configuration(operate_type, item[2]),
|
66 |
+
"latency": item[3],
|
67 |
+
"name": item[4],
|
68 |
+
}
|
69 |
+
new_data.append(new_item)
|
70 |
+
return new_data
|
71 |
+
|
72 |
+
|
73 |
+
def generate_html(hardware, latency, block_detail):
|
74 |
+
data = data_process(block_detail)
|
75 |
+
|
76 |
+
doc = """<html>
|
77 |
+
<head>
|
78 |
+
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
|
79 |
+
<meta name="viewport" content="width=device-width,
|
80 |
+
initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />
|
81 |
+
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet">
|
82 |
+
<link href="https://unpkg.com/[email protected]/dist/bootstrap-table.min.css" rel="stylesheet">
|
83 |
+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/font/bootstrap-icons.css">
|
84 |
+
<style>
|
85 |
+
html {
|
86 |
+
font-family: sans-serif;
|
87 |
+
padding: 5px;
|
88 |
+
}
|
89 |
+
|
90 |
+
body {
|
91 |
+
padding: 10px;
|
92 |
+
font-size: 0.875rem;
|
93 |
+
}
|
94 |
+
|
95 |
+
#dataviz {
|
96 |
+
width: 100%;
|
97 |
+
height: 300px;
|
98 |
+
position: relative;
|
99 |
+
}
|
100 |
+
|
101 |
+
#toolbar {
|
102 |
+
margin-top: 10px;
|
103 |
+
margin-bottom: 15px;
|
104 |
+
display: flex;
|
105 |
+
align-items: center;
|
106 |
+
}
|
107 |
+
|
108 |
+
input[type="number"]:focus-visible {
|
109 |
+
outline: none;
|
110 |
+
}
|
111 |
+
|
112 |
+
.bootstrap-table .fixed-table-container .fixed-table-body {
|
113 |
+
height: auto;
|
114 |
+
}
|
115 |
+
</style>
|
116 |
+
</head>
|
117 |
+
|
118 |
+
<body>
|
119 |
+
<h4 style="font-size: 1.5rem">Latency Analysis <i class="bi bi-question-circle" data-bs-container="body" data-bs-toggle="popover" data-bs-placement="right" style="font-size:1.2rem;"></i></h4>
|
120 |
+
<div id="popoverInfo" style="display: none">
|
121 |
+
The latency results are empowered by Microsoft nn-Meter. For more technical details, please refer to the paper: <a href="https://dl.acm.org/doi/abs/10.1145/3529706.3529712" target="_blank">nn-METER: Towards Accurate Latency Prediction of DNN Inference on Diverse Edge Devices</a>.
|
122 |
+
</div>
|
123 |
+
<div id="toolbar">
|
124 |
+
<div style="display: flex;align-items: center;">
|
125 |
+
<span>Group By: </span>
|
126 |
+
<select class="form-select" id="inputGroupBy" style="width: fit-content;margin-left: 5px;">
|
127 |
+
<option value="type">Operator Type</option>
|
128 |
+
<option value="name">None</option>
|
129 |
+
</select>
|
130 |
+
</div>
|
131 |
+
<div style="margin-left: 45px;margin-top:6px;display: flex;align-items: center;">
|
132 |
+
<div><label><input type="radio" name="quantity" value="all" class="quantity" checked> Show all</label></div>
|
133 |
+
|
134 |
+
<div style="margin-left: 10px;">
|
135 |
+
<label><input type="radio" name="quantity" value="top" class="quantity"> Show top</label>
|
136 |
+
<input type="number" value="10" min="1" style="width: 50px; border: none;
|
137 |
+
border-bottom: 1px #aaa solid;" id="quantityNumber" disabled>
|
138 |
+
</div>
|
139 |
+
</div>
|
140 |
+
</div>
|
141 |
+
<div style="display: flex;">
|
142 |
+
<div id="dataviz"> </div>
|
143 |
+
</div>
|
144 |
+
|
145 |
+
<table id="table" data-search="true" data-search-align="left" data-pagination="true" data-page-size="30" data-page-list="[10, 20, 30, 50, 100, all]">
|
146 |
+
<thead>
|
147 |
+
<tr>
|
148 |
+
<th data-field="order" data-sortable="true">Excution Order</th>
|
149 |
+
<th data-field="type" data-sortable="true">Operator Type</th>
|
150 |
+
<th data-field="configuration">Configuration</th>
|
151 |
+
<th data-field="latency" data-sortable="true">Latency (ms)</th>
|
152 |
+
<th data-field="name" width="20%" data-sortable="true">Detail Operator</th>
|
153 |
+
</tr>
|
154 |
+
</thead>
|
155 |
+
</table>
|
156 |
+
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/echarts.min.js" type="text/javascript"></script>
|
157 |
+
<script src="https://cdn.jsdelivr.net/npm/jquery/dist/jquery.min.js"></script>
|
158 |
+
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js"></script>
|
159 |
+
<script src="https://unpkg.com/[email protected]/dist/bootstrap-table.min.js"></script>
|
160 |
+
</body>
|
161 |
+
<script>
|
162 |
+
""" + f"""let rawData = {str(data).replace("'", '"')};""" + """
|
163 |
+
rawData.forEach(item => {
|
164 |
+
item.name = item.name.split(";").join("; ");
|
165 |
+
item.latency = Number(item.latency) ? Number(item.latency) : item.latency;
|
166 |
+
})
|
167 |
+
|
168 |
+
// table
|
169 |
+
let $table = $("#table");
|
170 |
+
$(function () {
|
171 |
+
$table.bootstrapTable({ data: rawData })
|
172 |
+
})
|
173 |
+
|
174 |
+
// visualization
|
175 |
+
const chartDom = document.getElementById("dataviz");
|
176 |
+
let myChart = echarts.init(chartDom);
|
177 |
+
Array.prototype.groupBy = function (key) {
|
178 |
+
return this.reduce(function (rv, x) {
|
179 |
+
(rv[x[key]] = rv[x[key]] || []).push(x);
|
180 |
+
return rv;
|
181 |
+
}, {});
|
182 |
+
};
|
183 |
+
|
184 |
+
function processData(rawData, groupBy, quantity) {
|
185 |
+
// transform data
|
186 |
+
let seriesData = Object.entries(rawData.groupBy(groupBy)).map(([name, arr]) => {
|
187 |
+
const value = arr.reduce((sum, curr) => sum + curr.latency, 0);
|
188 |
+
const type = arr[0].type;
|
189 |
+
return { name, value, type }
|
190 |
+
})
|
191 |
+
.sort((a, b) => {
|
192 |
+
return b.value - a.value
|
193 |
+
});
|
194 |
+
if (quantity) {
|
195 |
+
seriesData = seriesData.slice(0, quantity);
|
196 |
+
}
|
197 |
+
|
198 |
+
return {
|
199 |
+
seriesData,
|
200 |
+
legendData: seriesData.filter(d => Number(d.value)).map(d => d.name)
|
201 |
+
};
|
202 |
+
}
|
203 |
+
|
204 |
+
function formatNumber(num, fixed = 2){
|
205 |
+
if(Number(num.toFixed(fixed)) > 0){
|
206 |
+
return num.toFixed(fixed);
|
207 |
+
}else{
|
208 |
+
return num.toPrecision(1);
|
209 |
+
}
|
210 |
+
}
|
211 |
+
|
212 |
+
function render(data, groupBy) {
|
213 |
+
const sum = data.seriesData.reduce(function (prev, current) {
|
214 |
+
return prev + (Number(current.value) ? Number(current.value) : 0)
|
215 |
+
}, 0);
|
216 |
+
let option = {
|
217 |
+
title: {
|
218 |
+
text: """ + f"""`Total latency is {format(latency, '.4f')}(ms)`,
|
219 |
+
subtext: `on Hardware {hardware}`,"""+"""
|
220 |
+
left: "left",
|
221 |
+
textStyle:{
|
222 |
+
fontSize: 14
|
223 |
+
}
|
224 |
+
},
|
225 |
+
tooltip: {
|
226 |
+
trigger: "item",
|
227 |
+
formatter: (params) => groupBy==="name"? `<i>type:</i> ${params.data.type}<br><i>detail:</i> ${params.data.name}<br><b>${formatNumber(params.data.value)}</b><br><b>(${formatNumber(params.data.value / sum * 100)}%)</b>` : `${params.data.name}<br><b>${formatNumber(params.data.value)}</b><br><b>(${formatNumber(params.data.value / sum * 100)}%)</b>`,
|
228 |
+
extraCssText: "max-width: 400px; white-space: break-spaces;"
|
229 |
+
},
|
230 |
+
legend: {
|
231 |
+
type: "scroll",
|
232 |
+
orient: "vertical",
|
233 |
+
right: "10%",
|
234 |
+
top: "12%",
|
235 |
+
bottom: "12%",
|
236 |
+
data: data.legendData,
|
237 |
+
formatter: (name) => {
|
238 |
+
let arr = name.split(";");
|
239 |
+
return arr.length === 1 ? name : (arr[0]+"...");
|
240 |
+
},
|
241 |
+
tooltip: {
|
242 |
+
show: true,
|
243 |
+
formatter: (params) => {
|
244 |
+
let datum = data.seriesData.find(d => d.name === params.name);
|
245 |
+
return groupBy==="name"? `<i>type:</i> ${datum.type}<br><i>detail:</i> ${datum.name}<br><b>${formatNumber(datum.value)}</b><br><b>(${formatNumber(datum.value / sum * 100)}%)</b>` :`${datum.name}<br><b>${formatNumber(datum.value)}</b><br><b>(${formatNumber(datum.value / sum * 100)}%)</b>`
|
246 |
+
},
|
247 |
+
position: (point, params, dom, rect, { contentSize, viewSize }) => [viewSize[0] * 0.4 - contentSize[0] * 0.5, viewSize[1] * 0.5 - contentSize[1] * 0.5]
|
248 |
+
}
|
249 |
+
},
|
250 |
+
series: [
|
251 |
+
{
|
252 |
+
type: "pie",
|
253 |
+
radius: ["40%", "75%"],
|
254 |
+
center: ["40%", "50%"],
|
255 |
+
data: data.seriesData,
|
256 |
+
emphasis: {
|
257 |
+
itemStyle: {
|
258 |
+
shadowBlur: 10,
|
259 |
+
shadowOffsetX: 0,
|
260 |
+
shadowColor: "rgba(0, 0, 0, 0.5)"
|
261 |
+
}
|
262 |
+
}, label: {
|
263 |
+
formatter: "{d}%",
|
264 |
+
position: "inside",
|
265 |
+
color: "#fff",
|
266 |
+
},
|
267 |
+
}
|
268 |
+
],
|
269 |
+
color: ["#4e79a7", "#f28e2c", "#e15759", "#76b7b2", "#59a14f", "#edc949", "#af7aa1", "#ff9da7", "#9c755f", "#bab0ab"]
|
270 |
+
};
|
271 |
+
myChart.dispose();
|
272 |
+
myChart = echarts.init(chartDom);
|
273 |
+
myChart.setOption(option);
|
274 |
+
myChart.on("selectchanged", function(params){
|
275 |
+
const index = params.fromActionPayload.dataIndexInside;
|
276 |
+
const text = data.seriesData[index].name;
|
277 |
+
$table.bootstrapTable("resetSearch", text);
|
278 |
+
});
|
279 |
+
|
280 |
+
myChart.on("legendselectchanged", function(params) {
|
281 |
+
suppressSelection(myChart, params);
|
282 |
+
});
|
283 |
+
|
284 |
+
function suppressSelection(chart, params) {
|
285 |
+
chart.setOption({ animation: false });
|
286 |
+
|
287 |
+
// Re-select what the user unselected
|
288 |
+
chart.dispatchAction({
|
289 |
+
type: "legendSelect",
|
290 |
+
name: params.name
|
291 |
+
});
|
292 |
+
|
293 |
+
chart.setOption({ animation: true });
|
294 |
+
}
|
295 |
+
}
|
296 |
+
|
297 |
+
// config
|
298 |
+
let groupBy = "type";
|
299 |
+
let quantityNumber = 10;
|
300 |
+
let showAll = true;
|
301 |
+
|
302 |
+
render(processData(rawData, groupBy), groupBy);
|
303 |
+
|
304 |
+
function redraw() {
|
305 |
+
render(processData(rawData, groupBy, showAll ? null : quantityNumber), groupBy);
|
306 |
+
}
|
307 |
+
|
308 |
+
// change groupby
|
309 |
+
document.getElementById("inputGroupBy")
|
310 |
+
.addEventListener("change", function () {
|
311 |
+
groupBy = this.value;
|
312 |
+
|
313 |
+
redraw();
|
314 |
+
});
|
315 |
+
|
316 |
+
// change the model of show
|
317 |
+
function changeShowModel() {
|
318 |
+
if (this.value === "top") {
|
319 |
+
document.getElementById("quantityNumber").disabled = false;
|
320 |
+
showAll = false;
|
321 |
+
} else {
|
322 |
+
document.getElementById("quantityNumber").disabled = true;
|
323 |
+
showAll = true;
|
324 |
+
}
|
325 |
+
redraw();
|
326 |
+
}
|
327 |
+
let items = Object.values(document.getElementsByClassName("quantity"))
|
328 |
+
.forEach(item => item.addEventListener("change", changeShowModel));
|
329 |
+
|
330 |
+
// change the number of show
|
331 |
+
document.getElementById("quantityNumber")
|
332 |
+
.addEventListener("change", function () {
|
333 |
+
quantityNumber = this.value;
|
334 |
+
redraw();
|
335 |
+
})
|
336 |
+
|
337 |
+
// enable popover
|
338 |
+
const popoverTriggerList = document.querySelectorAll(`[data-bs-toggle="popover"]`)
|
339 |
+
const popoverList = [...popoverTriggerList].map(popoverTriggerEl => new bootstrap.Popover(popoverTriggerEl, {
|
340 |
+
html : true,
|
341 |
+
content: function() {
|
342 |
+
return $("#popoverInfo").html();
|
343 |
+
}
|
344 |
+
}));
|
345 |
+
</script>
|
346 |
+
</html>
|
347 |
+
"""
|
348 |
+
return f"""<iframe style="width: 100%; height: 480px" name="result" allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;" sandbox="allow-modals allow-forms allow-scripts allow-same-origin allow-popups allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" allowpaymentrequest="" frameborder="0" srcdoc='{doc}'></iframe>"""
|
349 |
+
|
350 |
+
def generate_error_html(massage):
|
351 |
+
return f"""<div style="color:#842029;background: #f8d7da;padding: 10px;border-radius: 10px; margin-top: 15px;"><b>nn-meter meets an error in latency prediction</b>: {massage}</div>
|
352 |
+
<div style="padding: 10px;">If you have any questions about the result, you can open new issues in <a href="https://github.com/microsoft/nn-Meter" target="_blank" style="color:#2563eb">nn-meter Git repository</a>.</div>
|
353 |
+
"""
|
354 |
+
|
355 |
+
def get_latency(model, hardware_name):
|
356 |
+
if model == None:
|
357 |
+
return generate_error_html("Please upload a model file or select one example below.")
|
358 |
+
model = model.name
|
359 |
+
|
360 |
+
if hardware_name == '':
|
361 |
+
return generate_error_html("Please select a device.")
|
362 |
+
|
363 |
+
predictor = predictor_map[hardware_name]
|
364 |
+
if model.endswith("onnx"):
|
365 |
+
model_type = "onnx"
|
366 |
+
elif model.endswith("pb"):
|
367 |
+
model_type = "pb"
|
368 |
+
else:
|
369 |
+
model_type = "nnmeter-ir"
|
370 |
+
|
371 |
+
try:
|
372 |
+
model_latency, block_detail = predictor.detailed_predict(model, model_type)
|
373 |
+
return generate_html(hardware_name, model_latency, block_detail)
|
374 |
+
except Exception as e:
|
375 |
+
return generate_error_html(repr(e))
|
376 |
+
|
377 |
+
|
378 |
+
|
379 |
+
title = "Interactive demo: nn-Meter (Draft Version)"
|
380 |
+
description = "Demo for Microsoft's nn-Meter, a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices. To use it, simply upload a model file, or use one of the example below and click βsubmitβ. Results will show up in a few seconds."
|
381 |
+
article = "<p style='text-align: center'><a href='https://dl.acm.org/doi/10.1145/3458864.3467882'>nn-Meter: towards accurate latency prediction of deep-learning model inference on diverse edge devices</a> | <a href='https://github.com/microsoft/nn-Meter'>Github Repo</a></p>"
|
382 |
+
examples =[
|
383 |
+
["samples/mobilenetv3small_0.pb", "cortexA76cpu_tflite21"],
|
384 |
+
["samples/mobilenetv3small_0.onnx", "adreno640gpu_tflite21"],
|
385 |
+
["samples/mobilenetv3small_0.json", "adreno630gpu_tflite21"]
|
386 |
+
]
|
387 |
+
|
388 |
+
inputs = [
|
389 |
+
gr.inputs.File(label="Model File"),
|
390 |
+
gr.inputs.Radio(choices=["cortexA76cpu_tflite21", "adreno640gpu_tflite21", "adreno630gpu_tflite21", "myriadvpu_openvino2019r2"], label="Device"),
|
391 |
+
]
|
392 |
+
outputs = gr.outputs.HTML()
|
393 |
+
|
394 |
+
iface = gr.Interface(fn=get_latency,
|
395 |
+
inputs=inputs,
|
396 |
+
outputs=outputs,
|
397 |
+
title=title,
|
398 |
+
description=description,
|
399 |
+
article=article,
|
400 |
+
examples=examples,
|
401 |
+
allow_flagging="auto",
|
402 |
+
css="""
|
403 |
+
div[id="6"] {
|
404 |
+
flex-direction: column;
|
405 |
+
}
|
406 |
+
|
407 |
+
div[id="12"] {
|
408 |
+
margin-left: 0px !important;
|
409 |
+
margin-top: 0.75em !important;
|
410 |
+
}
|
411 |
+
|
412 |
+
div[id="12"] iframe{
|
413 |
+
height: 80vh !important;
|
414 |
+
}
|
415 |
+
""")
|
416 |
+
iface.launch()
|
block_latency_demo.json
ADDED
@@ -0,0 +1,759 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
"layer1.1.conv-bn#57",
|
4 |
+
[
|
5 |
+
224,
|
6 |
+
3,
|
7 |
+
16,
|
8 |
+
3,
|
9 |
+
2
|
10 |
+
],
|
11 |
+
0.08969208666666643
|
12 |
+
],
|
13 |
+
[
|
14 |
+
"layer1.1.hswish#58",
|
15 |
+
[
|
16 |
+
112,
|
17 |
+
16
|
18 |
+
],
|
19 |
+
0.06512388473684201
|
20 |
+
],
|
21 |
+
[
|
22 |
+
"layer2.1.conv-bn-relu#59",
|
23 |
+
[
|
24 |
+
112,
|
25 |
+
16,
|
26 |
+
16,
|
27 |
+
1,
|
28 |
+
1
|
29 |
+
],
|
30 |
+
0.046539635777777595
|
31 |
+
],
|
32 |
+
[
|
33 |
+
"layer2.2.dwconv-bn-relu#60",
|
34 |
+
[
|
35 |
+
112,
|
36 |
+
16,
|
37 |
+
16,
|
38 |
+
3,
|
39 |
+
1
|
40 |
+
],
|
41 |
+
0.08458797897222242
|
42 |
+
],
|
43 |
+
[
|
44 |
+
"layer2.3.conv-bn-add#61",
|
45 |
+
[
|
46 |
+
112,
|
47 |
+
16,
|
48 |
+
16,
|
49 |
+
1,
|
50 |
+
1
|
51 |
+
],
|
52 |
+
0.046539635777777595
|
53 |
+
],
|
54 |
+
[
|
55 |
+
"layer3.1.conv-bn-relu#62",
|
56 |
+
[
|
57 |
+
112,
|
58 |
+
16,
|
59 |
+
64,
|
60 |
+
1,
|
61 |
+
1
|
62 |
+
],
|
63 |
+
0.2812146724444452
|
64 |
+
],
|
65 |
+
[
|
66 |
+
"layer3.2.dwconv-bn-relu#63",
|
67 |
+
[
|
68 |
+
112,
|
69 |
+
64,
|
70 |
+
64,
|
71 |
+
3,
|
72 |
+
2
|
73 |
+
],
|
74 |
+
0.1847138329761906
|
75 |
+
],
|
76 |
+
[
|
77 |
+
"layer3.3.conv-bn#64",
|
78 |
+
[
|
79 |
+
56,
|
80 |
+
64,
|
81 |
+
24,
|
82 |
+
1,
|
83 |
+
1
|
84 |
+
],
|
85 |
+
0.12564988711111114
|
86 |
+
],
|
87 |
+
[
|
88 |
+
"layer4.1.conv-bn-relu#65",
|
89 |
+
[
|
90 |
+
56,
|
91 |
+
24,
|
92 |
+
72,
|
93 |
+
1,
|
94 |
+
1
|
95 |
+
],
|
96 |
+
0.1313259719999998
|
97 |
+
],
|
98 |
+
[
|
99 |
+
"layer4.2.dwconv-bn-relu#66",
|
100 |
+
[
|
101 |
+
56,
|
102 |
+
72,
|
103 |
+
72,
|
104 |
+
3,
|
105 |
+
1
|
106 |
+
],
|
107 |
+
0.10148598884424595
|
108 |
+
],
|
109 |
+
[
|
110 |
+
"layer4.3.conv-bn-add#67",
|
111 |
+
[
|
112 |
+
56,
|
113 |
+
72,
|
114 |
+
24,
|
115 |
+
1,
|
116 |
+
1
|
117 |
+
],
|
118 |
+
0.12938113733333315
|
119 |
+
],
|
120 |
+
[
|
121 |
+
"layer5.1.conv-bn-relu#68",
|
122 |
+
[
|
123 |
+
56,
|
124 |
+
24,
|
125 |
+
72,
|
126 |
+
1,
|
127 |
+
1
|
128 |
+
],
|
129 |
+
0.1313259719999998
|
130 |
+
],
|
131 |
+
[
|
132 |
+
"layer5.2.dwconv-bn#69",
|
133 |
+
[
|
134 |
+
56,
|
135 |
+
72,
|
136 |
+
72,
|
137 |
+
5,
|
138 |
+
2
|
139 |
+
],
|
140 |
+
0.13221349583333308
|
141 |
+
],
|
142 |
+
[
|
143 |
+
"layer5.2.se-relu#70",
|
144 |
+
[
|
145 |
+
28,
|
146 |
+
72
|
147 |
+
],
|
148 |
+
0.2514369789473686
|
149 |
+
],
|
150 |
+
[
|
151 |
+
"layer5.3.conv-bn#71",
|
152 |
+
[
|
153 |
+
28,
|
154 |
+
72,
|
155 |
+
40,
|
156 |
+
1,
|
157 |
+
1
|
158 |
+
],
|
159 |
+
0.06686152977777766
|
160 |
+
],
|
161 |
+
[
|
162 |
+
"layer6.1.conv-bn-relu#72",
|
163 |
+
[
|
164 |
+
28,
|
165 |
+
40,
|
166 |
+
120,
|
167 |
+
1,
|
168 |
+
1
|
169 |
+
],
|
170 |
+
0.09544240288888854
|
171 |
+
],
|
172 |
+
[
|
173 |
+
"layer6.2.dwconv-bn#73",
|
174 |
+
[
|
175 |
+
28,
|
176 |
+
120,
|
177 |
+
120,
|
178 |
+
5,
|
179 |
+
1
|
180 |
+
],
|
181 |
+
0.1791692834623016
|
182 |
+
],
|
183 |
+
[
|
184 |
+
"layer6.2.se-relu#74",
|
185 |
+
[
|
186 |
+
28,
|
187 |
+
120
|
188 |
+
],
|
189 |
+
0.29275722631578976
|
190 |
+
],
|
191 |
+
[
|
192 |
+
"layer6.3.conv-bn-add#75",
|
193 |
+
[
|
194 |
+
28,
|
195 |
+
120,
|
196 |
+
40,
|
197 |
+
1,
|
198 |
+
1
|
199 |
+
],
|
200 |
+
0.09891386688888877
|
201 |
+
],
|
202 |
+
[
|
203 |
+
"layer7.1.conv-bn-relu#76",
|
204 |
+
[
|
205 |
+
28,
|
206 |
+
40,
|
207 |
+
120,
|
208 |
+
1,
|
209 |
+
1
|
210 |
+
],
|
211 |
+
0.09544240288888854
|
212 |
+
],
|
213 |
+
[
|
214 |
+
"layer7.2.dwconv-bn#77",
|
215 |
+
[
|
216 |
+
28,
|
217 |
+
120,
|
218 |
+
120,
|
219 |
+
5,
|
220 |
+
1
|
221 |
+
],
|
222 |
+
0.1791692834623016
|
223 |
+
],
|
224 |
+
[
|
225 |
+
"layer7.2.se-relu#78",
|
226 |
+
[
|
227 |
+
28,
|
228 |
+
120
|
229 |
+
],
|
230 |
+
0.29275722631578976
|
231 |
+
],
|
232 |
+
[
|
233 |
+
"layer7.3.conv-bn-add#79",
|
234 |
+
[
|
235 |
+
28,
|
236 |
+
120,
|
237 |
+
40,
|
238 |
+
1,
|
239 |
+
1
|
240 |
+
],
|
241 |
+
0.09891386688888877
|
242 |
+
],
|
243 |
+
[
|
244 |
+
"layer8.1.conv-bn#80",
|
245 |
+
[
|
246 |
+
28,
|
247 |
+
40,
|
248 |
+
240,
|
249 |
+
1,
|
250 |
+
1
|
251 |
+
],
|
252 |
+
0.17468612444444476
|
253 |
+
],
|
254 |
+
[
|
255 |
+
"layer8.1.hswish#81",
|
256 |
+
[
|
257 |
+
28,
|
258 |
+
240
|
259 |
+
],
|
260 |
+
0.034863998421052596
|
261 |
+
],
|
262 |
+
[
|
263 |
+
"layer8.2.dwconv-bn#82",
|
264 |
+
[
|
265 |
+
28,
|
266 |
+
240,
|
267 |
+
240,
|
268 |
+
3,
|
269 |
+
2
|
270 |
+
],
|
271 |
+
0.05733039375000008
|
272 |
+
],
|
273 |
+
[
|
274 |
+
"layer8.2.hswish#83",
|
275 |
+
[
|
276 |
+
14,
|
277 |
+
240
|
278 |
+
],
|
279 |
+
0.01200028842105264
|
280 |
+
],
|
281 |
+
[
|
282 |
+
"layer8.3.conv-bn#84",
|
283 |
+
[
|
284 |
+
14,
|
285 |
+
240,
|
286 |
+
80,
|
287 |
+
1,
|
288 |
+
1
|
289 |
+
],
|
290 |
+
0.1185776239999995
|
291 |
+
],
|
292 |
+
[
|
293 |
+
"layer9.1.conv-bn#85",
|
294 |
+
[
|
295 |
+
14,
|
296 |
+
80,
|
297 |
+
200,
|
298 |
+
1,
|
299 |
+
1
|
300 |
+
],
|
301 |
+
0.07862664244444413
|
302 |
+
],
|
303 |
+
[
|
304 |
+
"layer9.1.hswish#86",
|
305 |
+
[
|
306 |
+
14,
|
307 |
+
200
|
308 |
+
],
|
309 |
+
0.010081669999999966
|
310 |
+
],
|
311 |
+
[
|
312 |
+
"layer9.2.dwconv-bn#87",
|
313 |
+
[
|
314 |
+
14,
|
315 |
+
200,
|
316 |
+
200,
|
317 |
+
3,
|
318 |
+
1
|
319 |
+
],
|
320 |
+
0.024046657092261906
|
321 |
+
],
|
322 |
+
[
|
323 |
+
"layer9.2.hswish#88",
|
324 |
+
[
|
325 |
+
14,
|
326 |
+
200
|
327 |
+
],
|
328 |
+
0.010081669999999966
|
329 |
+
],
|
330 |
+
[
|
331 |
+
"layer9.3.conv-bn-add#89",
|
332 |
+
[
|
333 |
+
14,
|
334 |
+
200,
|
335 |
+
80,
|
336 |
+
1,
|
337 |
+
1
|
338 |
+
],
|
339 |
+
0.10319714688888944
|
340 |
+
],
|
341 |
+
[
|
342 |
+
"layer10.1.conv-bn#90",
|
343 |
+
[
|
344 |
+
14,
|
345 |
+
80,
|
346 |
+
184,
|
347 |
+
1,
|
348 |
+
1
|
349 |
+
],
|
350 |
+
0.07391564955555524
|
351 |
+
],
|
352 |
+
[
|
353 |
+
"layer10.1.hswish#91",
|
354 |
+
[
|
355 |
+
14,
|
356 |
+
184
|
357 |
+
],
|
358 |
+
0.00995709136842104
|
359 |
+
],
|
360 |
+
[
|
361 |
+
"layer10.2.dwconv-bn#92",
|
362 |
+
[
|
363 |
+
14,
|
364 |
+
184,
|
365 |
+
184,
|
366 |
+
3,
|
367 |
+
1
|
368 |
+
],
|
369 |
+
0.022844432440476167
|
370 |
+
],
|
371 |
+
[
|
372 |
+
"layer10.2.hswish#93",
|
373 |
+
[
|
374 |
+
14,
|
375 |
+
184
|
376 |
+
],
|
377 |
+
0.00995709136842104
|
378 |
+
],
|
379 |
+
[
|
380 |
+
"layer10.3.conv-bn-add#94",
|
381 |
+
[
|
382 |
+
14,
|
383 |
+
184,
|
384 |
+
80,
|
385 |
+
1,
|
386 |
+
1
|
387 |
+
],
|
388 |
+
0.09344137288888908
|
389 |
+
],
|
390 |
+
[
|
391 |
+
"layer11.1.conv-bn#95",
|
392 |
+
[
|
393 |
+
14,
|
394 |
+
80,
|
395 |
+
184,
|
396 |
+
1,
|
397 |
+
1
|
398 |
+
],
|
399 |
+
0.07391564955555524
|
400 |
+
],
|
401 |
+
[
|
402 |
+
"layer11.1.hswish#96",
|
403 |
+
[
|
404 |
+
14,
|
405 |
+
184
|
406 |
+
],
|
407 |
+
0.00995709136842104
|
408 |
+
],
|
409 |
+
[
|
410 |
+
"layer11.2.dwconv-bn#97",
|
411 |
+
[
|
412 |
+
14,
|
413 |
+
184,
|
414 |
+
184,
|
415 |
+
3,
|
416 |
+
1
|
417 |
+
],
|
418 |
+
0.022844432440476167
|
419 |
+
],
|
420 |
+
[
|
421 |
+
"layer11.2.hswish#98",
|
422 |
+
[
|
423 |
+
14,
|
424 |
+
184
|
425 |
+
],
|
426 |
+
0.00995709136842104
|
427 |
+
],
|
428 |
+
[
|
429 |
+
"layer11.3.conv-bn-add#99",
|
430 |
+
[
|
431 |
+
14,
|
432 |
+
184,
|
433 |
+
80,
|
434 |
+
1,
|
435 |
+
1
|
436 |
+
],
|
437 |
+
0.09344137288888908
|
438 |
+
],
|
439 |
+
[
|
440 |
+
"layer12.1.conv-bn#100",
|
441 |
+
[
|
442 |
+
14,
|
443 |
+
80,
|
444 |
+
480,
|
445 |
+
1,
|
446 |
+
1
|
447 |
+
],
|
448 |
+
0.1664279088888898
|
449 |
+
],
|
450 |
+
[
|
451 |
+
"layer12.1.hswish#101",
|
452 |
+
[
|
453 |
+
14,
|
454 |
+
480
|
455 |
+
],
|
456 |
+
0.020963691052631548
|
457 |
+
],
|
458 |
+
[
|
459 |
+
"layer12.2.dwconv-bn#102",
|
460 |
+
[
|
461 |
+
14,
|
462 |
+
480,
|
463 |
+
480,
|
464 |
+
3,
|
465 |
+
1
|
466 |
+
],
|
467 |
+
0.05033707406646825
|
468 |
+
],
|
469 |
+
[
|
470 |
+
"layer12.2.se#103",
|
471 |
+
[
|
472 |
+
14,
|
473 |
+
480
|
474 |
+
],
|
475 |
+
0.30968490526315845
|
476 |
+
],
|
477 |
+
[
|
478 |
+
"layer12.2.hswish#104",
|
479 |
+
[
|
480 |
+
14,
|
481 |
+
480
|
482 |
+
],
|
483 |
+
0.020963691052631548
|
484 |
+
],
|
485 |
+
[
|
486 |
+
"layer12.3.conv-bn#105",
|
487 |
+
[
|
488 |
+
14,
|
489 |
+
480,
|
490 |
+
112,
|
491 |
+
1,
|
492 |
+
1
|
493 |
+
],
|
494 |
+
0.2822340977777797
|
495 |
+
],
|
496 |
+
[
|
497 |
+
"layer13.1.conv-bn#106",
|
498 |
+
[
|
499 |
+
14,
|
500 |
+
112,
|
501 |
+
672,
|
502 |
+
1,
|
503 |
+
1
|
504 |
+
],
|
505 |
+
0.31593401333333454
|
506 |
+
],
|
507 |
+
[
|
508 |
+
"layer13.1.hswish#107",
|
509 |
+
[
|
510 |
+
14,
|
511 |
+
672
|
512 |
+
],
|
513 |
+
0.028506453157894702
|
514 |
+
],
|
515 |
+
[
|
516 |
+
"layer13.2.dwconv-bn#108",
|
517 |
+
[
|
518 |
+
14,
|
519 |
+
672,
|
520 |
+
672,
|
521 |
+
3,
|
522 |
+
1
|
523 |
+
],
|
524 |
+
0.06833738649305546
|
525 |
+
],
|
526 |
+
[
|
527 |
+
"layer13.2.se#109",
|
528 |
+
[
|
529 |
+
14,
|
530 |
+
672
|
531 |
+
],
|
532 |
+
0.4181391842105277
|
533 |
+
],
|
534 |
+
[
|
535 |
+
"layer13.2.hswish#110",
|
536 |
+
[
|
537 |
+
14,
|
538 |
+
672
|
539 |
+
],
|
540 |
+
0.028506453157894702
|
541 |
+
],
|
542 |
+
[
|
543 |
+
"layer13.3.conv-bn-add#111",
|
544 |
+
[
|
545 |
+
14,
|
546 |
+
672,
|
547 |
+
112,
|
548 |
+
1,
|
549 |
+
1
|
550 |
+
],
|
551 |
+
0.38993811555555447
|
552 |
+
],
|
553 |
+
[
|
554 |
+
"layer14.1.conv-bn#112",
|
555 |
+
[
|
556 |
+
14,
|
557 |
+
112,
|
558 |
+
672,
|
559 |
+
1,
|
560 |
+
1
|
561 |
+
],
|
562 |
+
0.31593401333333454
|
563 |
+
],
|
564 |
+
[
|
565 |
+
"layer14.1.hswish#113",
|
566 |
+
[
|
567 |
+
14,
|
568 |
+
672
|
569 |
+
],
|
570 |
+
0.028506453157894702
|
571 |
+
],
|
572 |
+
[
|
573 |
+
"layer14.2.dwconv-bn#114",
|
574 |
+
[
|
575 |
+
14,
|
576 |
+
672,
|
577 |
+
672,
|
578 |
+
5,
|
579 |
+
2
|
580 |
+
],
|
581 |
+
0.12773641041666683
|
582 |
+
],
|
583 |
+
[
|
584 |
+
"layer14.2.se#115",
|
585 |
+
[
|
586 |
+
7,
|
587 |
+
672
|
588 |
+
],
|
589 |
+
0.15399494736842148
|
590 |
+
],
|
591 |
+
[
|
592 |
+
"layer14.2.hswish#116",
|
593 |
+
[
|
594 |
+
7,
|
595 |
+
672
|
596 |
+
],
|
597 |
+
0.011023535789473677
|
598 |
+
],
|
599 |
+
[
|
600 |
+
"layer14.3.conv-bn#117",
|
601 |
+
[
|
602 |
+
7,
|
603 |
+
672,
|
604 |
+
160,
|
605 |
+
1,
|
606 |
+
1
|
607 |
+
],
|
608 |
+
0.27822387777777746
|
609 |
+
],
|
610 |
+
[
|
611 |
+
"layer15.1.conv-bn#118",
|
612 |
+
[
|
613 |
+
7,
|
614 |
+
160,
|
615 |
+
960,
|
616 |
+
1,
|
617 |
+
1
|
618 |
+
],
|
619 |
+
0.32120322444444405
|
620 |
+
],
|
621 |
+
[
|
622 |
+
"layer15.1.hswish#119",
|
623 |
+
[
|
624 |
+
7,
|
625 |
+
960
|
626 |
+
],
|
627 |
+
0.014172026315789451
|
628 |
+
],
|
629 |
+
[
|
630 |
+
"layer15.2.dwconv-bn#120",
|
631 |
+
[
|
632 |
+
7,
|
633 |
+
960,
|
634 |
+
960,
|
635 |
+
5,
|
636 |
+
1
|
637 |
+
],
|
638 |
+
0.11106422500000021
|
639 |
+
],
|
640 |
+
[
|
641 |
+
"layer15.2.se#121",
|
642 |
+
[
|
643 |
+
7,
|
644 |
+
960
|
645 |
+
],
|
646 |
+
0.21297702631578969
|
647 |
+
],
|
648 |
+
[
|
649 |
+
"layer15.2.hswish#122",
|
650 |
+
[
|
651 |
+
7,
|
652 |
+
960
|
653 |
+
],
|
654 |
+
0.014172026315789451
|
655 |
+
],
|
656 |
+
[
|
657 |
+
"layer15.3.conv-bn-add#123",
|
658 |
+
[
|
659 |
+
7,
|
660 |
+
960,
|
661 |
+
160,
|
662 |
+
1,
|
663 |
+
1
|
664 |
+
],
|
665 |
+
0.4788489133333347
|
666 |
+
],
|
667 |
+
[
|
668 |
+
"layer16.1.conv-bn#124",
|
669 |
+
[
|
670 |
+
7,
|
671 |
+
160,
|
672 |
+
960,
|
673 |
+
1,
|
674 |
+
1
|
675 |
+
],
|
676 |
+
0.32120322444444405
|
677 |
+
],
|
678 |
+
[
|
679 |
+
"layer16.1.hswish#125",
|
680 |
+
[
|
681 |
+
7,
|
682 |
+
960
|
683 |
+
],
|
684 |
+
0.014172026315789451
|
685 |
+
],
|
686 |
+
[
|
687 |
+
"layer16.2.dwconv-bn#126",
|
688 |
+
[
|
689 |
+
7,
|
690 |
+
960,
|
691 |
+
960,
|
692 |
+
5,
|
693 |
+
1
|
694 |
+
],
|
695 |
+
0.11106422500000021
|
696 |
+
],
|
697 |
+
[
|
698 |
+
"layer16.2.se#127",
|
699 |
+
[
|
700 |
+
7,
|
701 |
+
960
|
702 |
+
],
|
703 |
+
0.21297702631578969
|
704 |
+
],
|
705 |
+
[
|
706 |
+
"layer16.2.hswish#128",
|
707 |
+
[
|
708 |
+
7,
|
709 |
+
960
|
710 |
+
],
|
711 |
+
0.014172026315789451
|
712 |
+
],
|
713 |
+
[
|
714 |
+
"layer16.3.conv-bn-add#129",
|
715 |
+
[
|
716 |
+
7,
|
717 |
+
960,
|
718 |
+
160,
|
719 |
+
1,
|
720 |
+
1
|
721 |
+
],
|
722 |
+
0.4788489133333347
|
723 |
+
],
|
724 |
+
[
|
725 |
+
"layer17.1.conv-bn#130",
|
726 |
+
[
|
727 |
+
7,
|
728 |
+
160,
|
729 |
+
1280,
|
730 |
+
1,
|
731 |
+
1
|
732 |
+
],
|
733 |
+
0.40695861999999977
|
734 |
+
],
|
735 |
+
[
|
736 |
+
"layer17.1.hswish#131",
|
737 |
+
[
|
738 |
+
7,
|
739 |
+
1280
|
740 |
+
],
|
741 |
+
0.01831055315789479
|
742 |
+
],
|
743 |
+
[
|
744 |
+
"layer18.1.gap#132",
|
745 |
+
[
|
746 |
+
1,
|
747 |
+
1280
|
748 |
+
],
|
749 |
+
0.001
|
750 |
+
],
|
751 |
+
[
|
752 |
+
"layer19.1.fc#133",
|
753 |
+
[
|
754 |
+
1280,
|
755 |
+
1920
|
756 |
+
],
|
757 |
+
0.168
|
758 |
+
]
|
759 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-e git+https://github.com/microsoft/nn-Meter.git@dev/block-latency#egg=nn-Meter
|
2 |
+
tensorflow==2.6.0
|
3 |
+
torch==1.9.0
|
4 |
+
torchvision==0.10.0
|
5 |
+
onnx==1.10.0
|
6 |
+
onnx-simplifier==0.3.6
|
samples/mobilenetv3small_0.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
samples/mobilenetv3small_0.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25e6117900a394d143f56b53648c680ad93a7563ee472c419d4f416f5b77485a
|
3 |
+
size 10169165
|
samples/mobilenetv3small_0.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7790ba98e0e6981fee7c09babae466fe29dcef1ad5dc9bd5cc28929017c0123
|
3 |
+
size 8098911
|