Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
from abs_compressor import AbstractCompressor | |
class KiSCompressor(AbstractCompressor): | |
def __init__(self, DEVICE: str = 'cpu', model_dir: str = 'philippelaban/keep_it_simple'): | |
self.DEVICE = DEVICE | |
self.tokenizer = AutoTokenizer.from_pretrained(model_dir, padding_side='right', pad_token='<|endoftext|') | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
self.tokenizer.padding_side = 'right' | |
self.kis_model = AutoModelForCausalLM.from_pretrained(model_dir) | |
self.kis_model.to(self.DEVICE) | |
# if self.tokenizer.pad_token is None: | |
# self.tokenizer.pad_token = self.tokenizer.eos_token | |
# self.kis_model.eval() | |
def compress(self, original_prompt: str, ratio: float = 0.5, max_length: int = 150, num_beams: int = 4, do_sample: bool = True, num_return_sequences: int = 1, target_index: int = 0) -> dict: | |
original_tokens = len(self.gpt_tokenizer.encode(original_prompt)) | |
start_id = self.tokenizer.bos_token_id | |
print(self.tokenizer.padding_side) | |
tokenized_paragraph = [(self.tokenizer.encode(text=original_prompt) + [start_id])] | |
input_ids = torch.LongTensor(tokenized_paragraph) | |
if self.DEVICE == 'cuda': | |
input_ids = input_ids.type(torch.cuda.LongTensor) | |
output_ids = self.kis_model.generate(input_ids, max_length=max_length, num_beams=num_beams, do_sample=do_sample, | |
num_return_sequences=num_return_sequences, | |
pad_token_id=self.tokenizer.eos_token_id) | |
output_ids = output_ids[:, input_ids.shape[1]:] | |
output = self.tokenizer.batch_decode(output_ids) | |
output = [o.replace(self.tokenizer.eos_token, "") for o in output] | |
compressed_prompt = output[target_index] | |
compressed_tokens = len(self.gpt_tokenizer.encode(compressed_prompt)) | |
result = { | |
'compressed_prompt': compressed_prompt, | |
'ratio': compressed_tokens / original_tokens, | |
'original_tokens': original_tokens, | |
'compressed_tokens': compressed_tokens, | |
} | |
return result | |