Spaces:
Runtime error
Runtime error
from typing import List, Any | |
import tiktoken | |
class AbstractCompressor: | |
base_model = None | |
tokenizer = None | |
gpt_tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo-16k") | |
def compress(self, original_prompt: str, ratio: float) -> dict: | |
""" | |
Input original prompt/sentence and compression ratio, return compressed prompt/sentence.\ | |
:param original_prompt: | |
:param ratio: | |
:return: dict object | |
""" | |
# output content including | |
# { | |
# 'compressed_prompt': compressed prompt, | |
# 'ratio': compression ratio, | |
# 'original_tokens': token count of original prompt, | |
# 'compressed_tokens': token count of compressed prompt | |
# } | |
raise NotImplementedError() | |
def fit(self, datas: List[dict], valid_size: int) -> None: | |
""" | |
For trainable methods, call this function for training parameters. | |
Require training LongBench and valid set size. | |
:param datas: | |
:param valid_size: | |
:return: | |
""" | |
raise NotImplementedError() | |
def set_model(self, model: Any, **kwargs): | |
""" | |
Specify a trained or a pre-trained model. | |
:param model: | |
:param kwargs: | |
:return: | |
""" | |
pass | |