File size: 15,801 Bytes
a67ae61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
\subsection{Results of further dynamical systems}
\label{subsec_3_5_2_Models}
In this subsection, the \gls{cnmc} prediction results for other models will be displayed. 
The chosen dynamical systems with their configurations are the following.
% ==============================================================================
\begin{enumerate}
    \item  \emph{FW50}, based on the \emph{Four Wing} set of equations \eqref{eq_10_4_Wing} with $K=50, \, \vec{\beta }_{tr} = [\, \beta_0 = 8 ; \, \beta_{end} = 11 \,], \, n_{\beta, tr} = 13$.

    \item  \emph{Rössler15}, based on the \emph{Rössler} set of equations \eqref{eq_7_Ross} with $K=15, \, \vec{\beta }_{tr} = [\, \beta_0 = 6 ; \, \beta_{end} = 13 \,], \, n_{\beta, tr} = 15$.

    \item  \emph{TS15}, based on the \emph{Two Scroll} set of equations \eqref{eq_9_2_Scroll} with $K=15, \, \vec{\beta }_{tr} = [\, \beta_0 = 5 ; \, \beta_{end} = 12 \,], \, n_{\beta, tr} = 15$.    
\end{enumerate}
All the presented outputs were generated with \gls{svd} as the decomposition method and \gls{rf} as the $\bm Q / \bm T$ regressor.
Furthermore, the B-spline interpolation in the propagation step of \gls{cnm} was replaced with linear interpolation. 
The B-spline interpolation was originally utilized for smoothing the motion between two centroids. 
However, it was discovered for a high number of $K$, the B-spline interpolation is not able to reproduce the motion between two centroids accurately, but rather would impose unacceptable high deviations or oscillations into the predictions. 
This finding is also mentioned in \cite{Max2021} and addressed as one of \emph{ first CNMc's} limitations.  
Two illustrative examples of the unacceptable high deviations caused by the B-spline interpolation are given in figures \ref{fig_82_Traject} and \ref{fig_82_Autocorr}. 
The results are obtained for \emph{LS20} for $\beta = 31.75$ and $\beta = 51.75$ with $L=3$. 
In figures \ref{fig_82_Traj_B} and \ref{fig_83_Traj_B} it can be inspected that the B-spline interpolation has a highly undesired impact on the predicted trajectories.
In Contrast to that, in figures, \ref{fig_82_Traj_L} and \ref{fig_83_Traj_L}, where linear interpolation is utilized, no outliers are added to the predictions.
The impact of the embedded outliers, caused by the B-spline interpolation, on the autocorrelation is depicted in figures \ref{fig_82_Auto_B} and \ref{fig_83_Auto_B}.
The order of the deviation between the true and the \gls{cnmc} predicted autocorrelation can be grasped by inspecting the vertical axis scale.
Comparing it with the linear interpolated autocorrelations, shown in figures \ref{fig_82_Auto_L} and \ref{fig_83_Auto_L}, it can be recorded that the deviation between the true and predicted autocorrelations is significantly lower than in the B-spline interpolation case.
\newline 

Nevertheless, it is important to highlight that the B-spline interpolation is only a tool for smoothing the motion between two centroids. 
The quality of the modeled $\bm Q / \bm T$ cannot be assessed directly by comparing the trajectories and the autocorrelations.
To stress that the \gls{cpd} in figure \ref{fig_82_CPD_B} and \ref{fig_83_CPD_B} shall be considered.
It can be observed that \gls{cpd} does not represent the findings of the autocorrelations, i.e., the true and predicted behavior agree acceptably overall. 
This is because the type of interpolation has no influence on the modeling of the probability tensor $\bm Q$.
Thus, the outcome with the B-spline interpolation should not be regarded as an instrument that enables making assumptions about the entire prediction quality of \gls{cnmc}.  The presented points underline again the fact that more than one method should be considered to evaluate the prediction quality of \gls{cnmc}.
\newline


\begin{figure}[!h]
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Trajectories, B-spline, $\beta_{unseen} = 31.75$ }
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/18_lb_31.75_All.pdf}
        \label{fig_82_Traj_B}
    \end{subfigure}
    \hfill
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Trajectories, B-spline, $\beta_{unseen} = 51.75$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/19_lb_51.75_All.pdf}
        \label{fig_83_Traj_B}
    \end{subfigure}
    
    % ------------- Linear ----------------------
    \smallskip
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Trajectories, linear, $\beta_{unseen} = 31.75$ }
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/24_lb_31.75_All.pdf}
        \label{fig_82_Traj_L}
    \end{subfigure}
    \hfill
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Trajectories, linear, $\beta_{unseen} = 51.75$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/25_lb_51.75_All.pdf}
        \label{fig_83_Traj_L}
    \end{subfigure}
    \vspace{-0.3cm}
    \caption{Illustrative undesired oscillations cased by the B-spline interpolation and its impact on the predicted trajectory contrasted with linear interpolation, \emph{LS20}, $\beta = 31.75$ and $\beta =51.75$, $L=3$}
    \label{fig_82_Traject}
\end{figure}

%----------------------------------- AUTOCOR -----------------------------------

\begin{figure}[!h]
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Autocorrelations, B-spline, $\beta = 31.75$ }
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/20_lb_3_all_31.75.pdf}
        \label{fig_82_Auto_B}
    \end{subfigure}
    \hfill
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Autocorrelations, B-spline, $\beta_{unseen} = 51.75$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/21_lb_3_all_51.75.pdf}
        \label{fig_83_Auto_B}
    \end{subfigure}
    
    \smallskip
    % ------------- LINEAR ----------------------
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Autocorrelations, linear, $\beta = 31.75$ }
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/26_lb_3_all_31.75.pdf}
        \label{fig_82_Auto_L}
    \end{subfigure}
    \hfill
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Autocorrelations, linear, $\beta_{unseen} = 51.75$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/27_lb_3_all_51.75.pdf}
        \label{fig_83_Auto_L}
    \end{subfigure}
    \vspace{-0.3cm}
    \caption{Illustrative undesired oscillations cased by the B-spline interpolation and its impact on the predicted autocorrelations contrasted with linear interpolation, \emph{LS20}, $\beta = 31.75$ and $\beta =51.75$, $L=3$}
    \label{fig_82_Autocorr}
\end{figure}
    
\begin{figure}[!h]
    % ------------- CPD ----------------------
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{\gls{cpd}, $\beta = 31.75$ }
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/22_lb_31.75.pdf}
        \label{fig_82_CPD_B}
    \end{subfigure}
    \hfill
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{\gls{cpd}, $\beta_{unseen} = 51.75$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/23_lb_51.75.pdf}
        \label{fig_83_CPD_B}
    \end{subfigure}
    \vspace{-0.3cm}
    \caption{Illustrative the B-spline interpolation and its impact on the \glspl{cpd}, \emph{LS20}, $\beta = 31.75$ and $\beta =51.75$, $L=3$}
\end{figure}

\FloatBarrier
The results generated with the above mentioned linear interpolation for  \emph{FW50}, \emph{Rössler15} and \emph{TS15} are depicted in figures \ref{fig_79} to \ref{fig_81}, respectively. 
Each of them consists of an illustrative trajectory, 3D and 2D trajectories, the autocorrelations, the \gls{cpd} and the MAE error between the true and \gls{cnmc} predicted trajectories for a range of $\vec{L}$ and some $\vec{\beta}_{unseen}$.
The illustrative trajectory includes arrows, which provide additional information.
First, the direction of the motion, then the size of the arrows represents the velocity of the system. Furthermore, the change in the size of the arrows is equivalent to a change in the velocity, i.e., the acceleration.
Systems like the \emph{TS15} exhibit a fast change in the size of the arrows, i.e., the acceleration is nonlinear. 
The more complex the behavior of the acceleration is, the more complex the overall system becomes.
The latter statement serves to emphasize that \gls{cnmc} can be applied not only to rather simple systems such as the Lorenz attractor \cite{lorenz1963deterministic}, but also to more complex systems such as the \emph{FW50} and \emph{TS15}.\newline 

All in all, the provided results for the 3 systems are very similar to those already explained in the previous subsection \ref{subsec_3_5_1_SLS}.
Thus, the results presented are for demonstration purposes and will not be discussed further.
However, the 3 systems also have been calculated with different values for $K$. 
For \emph{FW50}, the range of $\vec{K}= [\, 15, \, 30, \, 50 \, ]$ was explored with the finding that the influence of $K$ remained quite small.
For \emph{Rössler15} and \emph{TS15}, the ranges were chosen as $\vec{K}= [\, 15, \, 30, \, 100\,]$ and $\vec{K}= [\, 15, \, 75 \,]$, respectively.
The influence of $K$ was found to be insignificant also for the latter two systems.
% ==============================================================================
% ======================= FW50 =================================================
% ==============================================================================
\begin{figure}[!h]
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Illustrative trajectory $\beta = 9$ }
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/0_lb_9.000.pdf}
    \end{subfigure}
    \hfill
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Trajectories, $\beta_{unseen} = 8.1$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/1_lb_8.1_All.pdf}
    \end{subfigure}

    \smallskip
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{2D-trajectories, $\beta_{unseen} = 8.1$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/2_lb_8.1_3V_All.pdf}
    \end{subfigure}
    \hfill
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Autocorrelations, $\beta_{unseen} = 8.1$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/3_lb_3_all_8.1.pdf}
    \end{subfigure}
    
    
    \smallskip
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{\gls{cpd}, $\beta_{unseen} = 8.1$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/4_lb_8.1.pdf}
    \end{subfigure}
    \hfill
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Autocorrelations $MAE(L,\, \beta_{unseen})$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/5_lb_1_Orig_CNMc.pdf}
    \end{subfigure}
    \vspace{-0.3cm}
    \caption{Results for \emph{FW50}, $\beta_{unseen} = 8.1, \, L= 2$}
    \label{fig_79}
\end{figure}
% ==============================================================================
% ======================= FW50 =================================================
% ==============================================================================

% ==============================================================================
% ======================= Rossler 15 ===========================================
% ==============================================================================
\begin{figure}[!h]
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Illustrative trajectory $\beta = 7.5$ }
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/6_lb_7.500.pdf}
    \end{subfigure}
    \hfill
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Trajectories, $\beta_{unseen} = 9.6$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/7_lb_9.6_All.pdf}
    \end{subfigure}

    \smallskip
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{2D-trajectories, $\beta_{unseen} = 9.6$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/8_lb_9.6_3V_All.pdf}
    \end{subfigure}
    \hfill
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Autocorrelations, $\beta_{unseen} = 9.6$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/9_lb_3_all_9.6.pdf}
    \end{subfigure}
    
    
    \smallskip
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{\gls{cpd}, $\beta_{unseen} = 9.6$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/10_lb_9.6.pdf}
    \end{subfigure}
    \hfill
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Autocorrelations $MAE(L,\, \beta_{unseen})$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/11_lb_1_Orig_CNMc.pdf}
    \end{subfigure}
    \vspace{-0.3cm}
    \caption{Results for \emph{Rössler15}, $\beta_{unseen} = 9.6,\, L =1$}
    \label{fig_80}
\end{figure}
% ==============================================================================
% ======================= Rossler 15 ===========================================
% ==============================================================================


% ==============================================================================
% ======================= TS 15 ===========================================
% ==============================================================================
\begin{figure}[!h]
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Illustrative trajectory $\beta = 11$ }
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/12_lb_11.000.pdf}
    \end{subfigure}
    \hfill
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Trajectories, $\beta_{unseen} = 5.1$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/13_lb_5.1_All.pdf}
    \end{subfigure}

    \smallskip
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{2D-trajectories, $\beta_{unseen} = 5.1$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/14_lb_5.1_3V_All.pdf}
    \end{subfigure}
    \hfill
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Autocorrelations, $\beta_{unseen} = 5.1$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/15_lb_3_all_5.1.pdf}
    \end{subfigure}
    
    
    \smallskip
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{\gls{cpd}, $\beta_{unseen} = 5.1$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/16_lb_5.1.pdf}
    \end{subfigure}
    \hfill
    \begin{subfigure}{0.5\textwidth}
        \centering
        \caption{Autocorrelations $MAE(L,\, \beta_{unseen})$}
        \includegraphics[width =\textwidth]
        {2_Figures/3_Task/5_Models/17_lb_1_Orig_CNMc.pdf}
    \end{subfigure}
    \vspace{-0.3cm}
    \caption{Results for \emph{TS15}, $\beta_{unseen} = 5.1,\, L =2$}
    \label{fig_81}
\end{figure}
% ==============================================================================
% ======================= TS 15 ================================================
% ==============================================================================