Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
import google.generativeai as genai | |
from langchain.chains.question_answering import load_qa_chain | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from PIL import Image | |
import io | |
from langchain_groq import ChatGroq | |
from opencc import OpenCC | |
# 設置OpenCC轉換器 | |
cc = OpenCC('s2t') # 從簡體轉換到繁體 | |
# 配置Gemini API | |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) | |
# 配置Groq API | |
groq_api_key = os.getenv("GROQ_API_KEY") | |
os.environ["GROQ_API_KEY"] = groq_api_key | |
# 加載Mistral模型 | |
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" | |
mistral_tokenizer = AutoTokenizer.from_pretrained(model_path) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
dtype = torch.bfloat16 | |
mistral_model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) | |
def to_traditional_chinese(text): | |
return cc.convert(text) | |
def process_with_gemini(file, image, question): | |
gemini_model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) | |
if file: | |
pdf_loader = PyPDFLoader(file.name) | |
pages = pdf_loader.load_and_split() | |
context = "\n".join(str(page.page_content) for page in pages[:30]) | |
prompt_template = """根據提供的上下文盡可能準確地回答問題。如果上下文中沒有答案,請說"上下文中沒有可用的答案" \n\n 上下文: \n {context}?\n 問題: \n {question} \n 回答: """ | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
chain = load_qa_chain(gemini_model, chain_type="stuff", prompt=prompt) | |
result = chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True) | |
return to_traditional_chinese(result['output_text']) | |
elif image: | |
vision_model = genai.GenerativeModel('gemini-pro-vision') | |
response = vision_model.generate_content([image, question]) | |
return to_traditional_chinese(response.text) | |
else: | |
return "請上傳PDF文件或圖片。" | |
def process_with_groq(file, question): | |
if not file: | |
return "Groq處理只適用於PDF文件。請上傳PDF文件。" | |
groq_model = ChatGroq(model_name="mixtral-8x7b-32768", temperature=0.3) | |
pdf_loader = PyPDFLoader(file.name) | |
pages = pdf_loader.load_and_split() | |
context = "\n".join(str(page.page_content) for page in pages[:30]) | |
prompt_template = """根據提供的上下文盡可能準確地回答問題。如果上下文中沒有答案,請說"上下文中沒有可用的答案" \n\n 上下文: \n {context}?\n 問題: \n {question} \n 回答: """ | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
chain = load_qa_chain(groq_model, chain_type="stuff", prompt=prompt) | |
result = chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True) | |
return to_traditional_chinese(result['output_text']) | |
def process_with_mistral(question): | |
mistral_prompt = f"根據這個問題: {question}\n生成一個回答:" | |
mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(device) | |
with torch.no_grad(): | |
mistral_outputs = mistral_model.generate(mistral_inputs, max_length=100) | |
mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True) | |
return to_traditional_chinese(mistral_output) | |
# 定義Gradio界面 | |
with gr.Blocks() as demo: | |
gr.Markdown("# 多模態RAG知識檢索系統(使用Gemini、Groq和Mistral)") | |
with gr.Row(): | |
input_file = gr.File(label="上傳PDF文件") | |
input_image = gr.Image(type="pil", label="上傳圖片") | |
input_question = gr.Textbox(label="詢問文檔或圖片相關問題") | |
with gr.Row(): | |
gemini_button = gr.Button("使用Gemini處理") | |
groq_button = gr.Button("使用Groq處理") | |
mistral_button = gr.Button("使用Mistral處理") | |
with gr.Row(): | |
gemini_output = gr.Textbox(label="Gemini輸出") | |
groq_output = gr.Textbox(label="Groq輸出") | |
mistral_output = gr.Textbox(label="Mistral輸出") | |
gemini_button.click( | |
fn=process_with_gemini, | |
inputs=[input_file, input_image, input_question], | |
outputs=gemini_output | |
) | |
groq_button.click( | |
fn=process_with_groq, | |
inputs=[input_file, input_question], | |
outputs=groq_output | |
) | |
mistral_button.click( | |
fn=process_with_mistral, | |
inputs=[input_question], | |
outputs=mistral_output | |
) | |
demo.launch() |