import gradio as gr from transformers import AutoProcessor, AutoModelForCausalLM import spaces import io from PIL import Image import base64 # Para decodificar imagens Base64 import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) # model_id = 'J-LAB/Florence-vl3' model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval() processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) DESCRIPTION = "# Product Describe by Fluxi IA\n### Base Model [Florence-2] (https://huggingface.co/microsoft/Florence-2-large)" @spaces.GPU def run_example(task_prompt, image): inputs = processor(text=task_prompt, images=image, return_tensors="pt").to("cuda") generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, early_stopping=False, do_sample=False, num_beams=3, ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation( generated_text, task=task_prompt, image_size=(image.width, image.height) ) return parsed_answer def process_image(image, task_prompt): if isinstance(image, str): if image.startswith('data:image/png;base64,'): # Decodifica a imagem Base64 image_data = base64.b64decode(image.split(',')[1]) image = Image.open(io.BytesIO(image_data)) image = Image.fromarray(image) # Convert NumPy array to PIL Image if task_prompt == 'Product Caption': task_prompt = '' elif task_prompt == 'OCR': task_prompt = '' results = run_example(task_prompt, image) # Remove the key and get the text value if results and task_prompt in results: output_text = results[task_prompt] else: output_text = "" # Convert newline characters to HTML line breaks output_text = output_text.replace("\n\n", "

").replace("\n", "
") return output_text css = """ #output { overflow: auto; border: 1px solid #ccc; padding: 10px; background-color: rgb(31 41 55); color: #fff; } """ js = """ function adjustHeight() { var outputElement = document.getElementById('output'); outputElement.style.height = 'auto'; // Reset height to auto to get the actual content height var height = outputElement.scrollHeight + 'px'; // Get the scrollHeight outputElement.style.height = height; // Set the height } // Attach the adjustHeight function to the click event of the submit button document.querySelector('button').addEventListener('click', function() { setTimeout(adjustHeight, 500); // Adjust the height after a small delay to ensure content is loaded }); """ single_task_list =[ 'Product Caption', 'OCR' ] with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) with gr.Tab(label="Product Image Select"): with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Picture") task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Product Caption") submit_btn = gr.Button(value="Submit") with gr.Column(): output_text = gr.HTML(label="Output Text", elem_id="output") gr.Markdown(""" ## How to use via API To use this model via API, you can follow the example code below: python !pip install gradio_client from gradio_client import Client, handle_file client = Client("J-LAB/Fluxi-IA") result = client.predict( image=handle_file('https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png'), api_name="/process_image" ) print(result) """) submit_btn.click(process_image, [input_img, task_prompt], [output_text]) demo.load(lambda: None, inputs=None, outputs=None, js=js) demo.launch(debug=True)