Spaces:
Sleeping
Sleeping
# import json | |
# import os | |
# from datetime import datetime, timezone | |
# | |
# from src.display.formatting import styled_error, styled_message, styled_warning | |
# from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO | |
# from src.submission.check_validity import ( | |
# already_submitted_models, | |
# check_model_card, | |
# get_model_size, | |
# is_model_on_hub, | |
# ) | |
# | |
# REQUESTED_MODELS = None | |
# USERS_TO_SUBMISSION_DATES = None | |
# | |
# def add_new_eval( | |
# model: str, | |
# base_model: str, | |
# revision: str, | |
# precision: str, | |
# weight_type: str, | |
# model_type: str, | |
# ): | |
# global REQUESTED_MODELS | |
# global USERS_TO_SUBMISSION_DATES | |
# if not REQUESTED_MODELS: | |
# REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) | |
# | |
# user_name = "" | |
# model_path = model | |
# if "/" in model: | |
# user_name = model.split("/")[0] | |
# model_path = model.split("/")[1] | |
# | |
# precision = precision.split(" ")[0] | |
# current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | |
# | |
# if model_type is None or model_type == "": | |
# return styled_error("Please select a model type.") | |
# | |
# # Does the model actually exist? | |
# if revision == "": | |
# revision = "main" | |
# | |
# # Is the model on the hub? | |
# if weight_type in ["Delta", "Adapter"]: | |
# base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True) | |
# if not base_model_on_hub: | |
# return styled_error(f'Base model "{base_model}" {error}') | |
# | |
# if not weight_type == "Adapter": | |
# model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True) | |
# if not model_on_hub: | |
# return styled_error(f'Model "{model}" {error}') | |
# | |
# # Is the model info correctly filled? | |
# try: | |
# model_info = API.model_info(repo_id=model, revision=revision) | |
# except Exception: | |
# return styled_error("Could not get your model information. Please fill it up properly.") | |
# | |
# model_size = get_model_size(model_info=model_info, precision=precision) | |
# | |
# # Were the model card and license filled? | |
# try: | |
# license = model_info.cardData["license"] | |
# except Exception: | |
# return styled_error("Please select a license for your model") | |
# | |
# modelcard_OK, error_msg = check_model_card(model) | |
# if not modelcard_OK: | |
# return styled_error(error_msg) | |
# | |
# # Seems good, creating the eval | |
# print("Adding new eval") | |
# | |
# eval_entry = { | |
# "model": model, | |
# "base_model": base_model, | |
# "revision": revision, | |
# "precision": precision, | |
# "weight_type": weight_type, | |
# "status": "PENDING", | |
# "submitted_time": current_time, | |
# "model_type": model_type, | |
# "likes": model_info.likes, | |
# "params": model_size, | |
# "license": license, | |
# "private": False, | |
# } | |
# | |
# # Check for duplicate submission | |
# if f"{model}_{revision}_{precision}" in REQUESTED_MODELS: | |
# return styled_warning("This model has been already submitted.") | |
# | |
# print("Creating eval file") | |
# OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" | |
# os.makedirs(OUT_DIR, exist_ok=True) | |
# out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json" | |
# | |
# with open(out_path, "w") as f: | |
# f.write(json.dumps(eval_entry)) | |
# | |
# print("Uploading eval file") | |
# API.upload_file( | |
# path_or_fileobj=out_path, | |
# path_in_repo=out_path.split("eval-queue/")[1], | |
# repo_id=QUEUE_REPO, | |
# repo_type="dataset", | |
# commit_message=f"Add {model} to eval queue", | |
# ) | |
# | |
# # Remove the local file | |
# os.remove(out_path) | |
# | |
# return styled_message( | |
# "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." | |
# ) | |